xmlui.ArtifactBrowser.AdvancedSearch.title

Show simple item record

dc.contributor.advisorMauricio Sánchez, David Santos
dc.contributor.authorGil Zavaleta, Eybi
dc.contributor.authorRodríguez Collas, Enith
dc.date.accessioned2013-10-03T21:45:37Z
dc.date.available2013-10-03T21:45:37Z
dc.date.issued2010
dc.identifier.urihttps://hdl.handle.net/20.500.12672/3222
dc.description.abstractLa supervivencia en los negocios altamente competitivos de hoy requiere una visión precisa de la demanda para poner en marcha los planes de producción, inventario, distribución y compra dentro de las empresas; el sector farmacéutico no es la excepción, ues los efectos de las temporadas, promociones, cambios de precios, publicidad, productos con bajo o alto nivel de movimiento y datos atípicos en general afectan en la determinación de la misma. En este contexto, pronosticar por arriba de la demanda tiene entre sus consecuencias el excesivo inventario de fármacos, obsolescencia o caducidad, y por otro lado, pronosticar por debajo de la demanda tiene como consecuencia la pérdida de las ventas y un posible incremento en los costos. Por lo mencionado, el tema se centra en el desarrollo de un sistema que usa las técnicas de redes neuronales artificiales para el pronóstico de la demanda de productos. En este trabajo se propone el uso de una red neuronal (Perceptrón multicapa) para el pronóstico de la demanda de productos farmacéuticos, la cual realizará su fase de aprendizaje con el algoritmo backpropagation que brinda una taza de error de 3.57% en el mejor caso encontrado; su implementación se desarrollará bajo la tecnología de MATLAB para la construcción de la red neuronal y del lenguaje JAVA para el diseño de la interfaz gráfica de usuario. Palabras clave: Pronóstico de la demanda, Backpropagation, sector farmacéutico.es
dc.description.abstract--- The survival in the highly competitive business of today needs a precise vision of the demand to put in march the plans of production, inventory, distribution and buy inside the companies; the pharmaceutical sector is not the exception, so he effects of the seasons, promotions, changes of prices, trends, products with under or high level of movement and atypical information affects in the determination of the same one. In this context, to predict overhead of the demand it as between his consequences the overstock of medicaments, obsolescence or caducity, and on the other hand, to predict below the demand has as consequence the loss of sales and the possible increase in the costs. For the mentioned, the topic centres on the development of a system that uses the technologies of Artificial Neura Networks and of the diffuse logic for the forecast of the demand of products. This paper proposes the use of a neural network (multilayer perceptron) for the prediction of demand for pharmaceuticals, which will hold its learning phase with the backpropagation algorithm that provides an error rate of 3.57%; its implementation will under MATLAB technology for building the neural network and the JAVA language for the design of the graphical user interface. Keywords: Demand forecasting, Backpropagation, Pharmaceutical sector.en
dc.description.uriTesises
dc.language.isospaes
dc.publisherUniversidad Nacional Mayor de San Marcoses
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.sourceUniversidad Nacional Mayor de San Marcoses
dc.sourceRepositorio de Tesis - UNMSMes
dc.subjectRedes neuronales (Computación)es
dc.subjectIndustria farmacéutica - Innovaciones tecnológicases
dc.titleSistema de pronóstico de la demanda de productos farmacéuticos basado en redes neuronaleses
dc.typeinfo:eu-repo/semantics/bachelorThesises


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record