Desigualdad isoperimétrica en Rn

View/ Open
Descargar
(application/pdf: 871.1Kb)
(application/pdf: 871.1Kb)
Date
2017Author(s)
Taza Chambi, Galindo
Metadata
Show full item recordAbstract
Describe el problema isoperimétrico en el espacio euclideano n-dimensional. Aborda los orígenes del problema isoperimétrico y los conceptos y resultados del espacio Rn, la función Gamma, las funciones Lipschitz, la medida de Hausdorff, la fórmula de la co-área y conceptos de geometría diferencial. Presenta dos pruebas de la desigualdad isoperimétrica en el plano, una utilizando elementos de geometría diferencial y otra utilizando las series de Fourier, caracterizando la igualdad cuando el dominio Ω es un disco. Presenta el Teorema 4.2.1, la desigualdad isoperimétrica en Rn: x. Sea Ω un dominio acotado en Rn , con frontera ∂Ω de clase C 1. Entonces |∂Ω| |Ω| / 1−1/n ≥ |S n−1 | / |Bn| 1−1/n , 1 donde: B n = {x ∈ R n ; ||x||< 1} denota la bola unitaria n-dimensional de R n , S n−1 = ∂B n es la esfera unitaria determinada por B n y, finalmente |B n | y |S n−1 | denotan la n-medida de Lebesgue y (n − 1)-medida de Lebesgue correspondiente. La prueba está basada en el teorema de Federer-Fleming, el cual permite reescribir la desigualdad isoperimétrica como una desigualdad en el espacio de funciones C∞ c (Rn). Posteriormente, asumiendo algunas condiciones sobre el dominio Ω, probaremos que la igualdad es alcanzada si y solamente si Ω es una bola n-dimensional en Rn. Presenta algunas aplicaciones de la desigualdad isoperimétrica. Refiere cómo esta desigualdad se amplifica hacia espacios más generales y se enuncian algunos resultados que pueden servir como tema para trabajos futuros.
Collections
- Tesis EP Matemática [118]