xmlui.ArtifactBrowser.AdvancedSearch.title

Show simple item record

dc.contributor.advisorRivera Riofano, Pablo Héctor
dc.contributor.authorAslla Quispe, Abrahan Pablo
dc.date.accessioned2015-01-28T15:15:58Z
dc.date.available2015-01-28T15:15:58Z
dc.date.issued2014
dc.identifier.urihttps://hdl.handle.net/20.500.12672/3746
dc.description.abstractEn el presente trabajo se exponen las herramientas utilizadas en en estudio de la estructura de bandas del grafeno y nanoribbons de grafeno con condiciones de borde zigzag (ZGNR), armchair (AGNR) y barbados (bearded) dentro del modelo del enlace fuerte (tight-binding). El transporte electrónico en nanodispositivos de grafeno se describe dentro del formalismo de Landauer y Landauer-Büttiker, dentro de las cuales usamos como herramienta principal las funciones de Green. Consideramos que cada nanodispositivo se encuentra formado por el nanodispositivo conectado a contactos semi-infinitos ideales, reduciendo en estos casos el efecto de los contactos mediante el uso de las autoenergías que se calculan usando las funciones de Green de los contactos. Los contactos de los nanodispositivos se consideran formados por cadenas verticales, donde cada cadena interactúa con las cadenas paralelas y vecinas, esta propiedad permite utilizar el método recursivo de convergencia rápida para el cálculo de las funciones de Green de los contactos y el método de Decimación para el cálculo de la función de Green de los nanodispositivos. Evaluamos la estructura de bandas y la conductancia eléctrica de los nanoribbons de borde zigzag, borde armchair y borde bearded, encontrando que los nanoribbons ZGNR tienen comportamiento conductor, los nanoribbons AGNR tienen comportamiento semimetálico si M = (N + 1)=3 (con N número de dímeros por cadena unidad) es un número entero y en caso contrario los nanoribbons AGNR tienen comportamiento semiconductor donde el gap de energía prohibida E tiene relación inversa con el ancho del nanoribbons. Los nanoribbons de borde bearded tienen comportamiento conductor al igual que los nanoribbons ZGNR, en cambio los nanoribbons de borde mixto zigzag y bearded tienen comportamiento semiconductor, donde el gap de energía prohibida disminuye a medida que aumenta el ancho del nanoribbons. Analizamos también el transporte electrónico en nanoporos rectangulares en redes cuadradas y en redes de grafeno, calculando asi mismo el efecto sobre el transporte electrónico originadas por moléculas de diferentes configuraciones ubicadas en el centro de los nanoporos, los resultados muestran que las moléculas producen la presencia de resonancias y antiresonancias en diferentes valores de energía que son caracteristicos para cada tipo de molécula en el espectro de coeficientes de transmisión, estas resonancias y antiresonancias son evaluadas en términos de variación del coeficiente de transmisión.
dc.description.uriTesis
dc.language.isospa
dc.publisherUniversidad Nacional Mayor de San Marcos
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceUniversidad Nacional Mayor de San Marcos
dc.sourceRepositorio de Tesis - UNMSM
dc.subjectGrafeno - Propiedades eléctricas
dc.titleMagnetoresistencia del grafeno
dc.typeinfo:eu-repo/semantics/masterThesis
thesis.degree.grantorUniversidad Nacional Mayor de San Marcos. Facultad de Ciencias Físicas. Unidad de Posgrado
dc.publisher.countryPE
renati.advisor.dni08280449
renati.advisor.orcidhttps://orcid.org/0000-0003-3609-3889
renati.levelhttps://purl.org/pe-repo/renati/level#maestro
renati.typehttps://purl.org/pe-repo/renati/type#tesis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess