Topología inferior en el conjunto parcialmente ordenado de las topologías Hausdorff sobre un conjunto infinito fijo

View/ Open
Descargar
(application/pdf: 1.077Mb)
(application/pdf: 1.077Mb)
Date
2022Author(s)
Serrato Vargas, Sandra
Metadata
Show full item recordAbstract
Determina la caracterización de las topologías (sobre un conjunto infinito fijo X) que tienen un sucesor inmediato o un predecesor inmediato en TOP1 ó en TOP2. Usaremos TOP1 para denotar al retículo formado por el conjunto de las topologías T1 sobre X y la inclusión. Usaremos TOP2 para denotar al conjunto parcialmente ordenado formado por el conjunto de las topologías Hausdorff sobre X y la inclusión. Por otro lado, se mostrará un ejemplo que posea topología superior e inferior. Seguidamente, como en [2] se mostró que un espacio de Hausdorff compacto no puede contener un punto maximal y por tanto su topología no es inferior, en el presente trabajo, generalizaremos este resultado mostrando que un punto maximal en un espacio H-cerrado no es punto regular. Además daremos un ejemplo con el cual se mostrará que la topología de un espacio numerablemente compacto, H-cerrado, de numerable estrechez puede ser topología inferior. Finalmente, se dará un ejemplo de una topología superior en TOP2.
Subject
Collections
- Tesis EP Matemática [118]