UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

FACULTAD DE MEDICINA HUMANA

E.A.P. DE TECNOLOGÍA MÉDICA

Actividad antimicrobiana -in vitro- del aceite de Copaiba frente a bacterias patógenas, Instituto de Medicina Tropical Daniel Alcides Carrión -Facultad de Medicina

TESIS
Para optar el Título Profesional de Licenciado en Tecnología Médica en el Área de Laboratorio Clínico y Anatomía Patológica

AUTOR
Julio José Francia Francia

asesor
Giuliana Mercedes Romero Barrenechea

Lima – Perú
2013
DEDICATORIA

A Dios por acompañarme todos los días, por escucharme y permitirme el haber llegado hasta este momento tan importante para mí y hacer que las personas que quiero estén junto a mí.

A mi Padre Julio Francia por todas las horas que no pude estar junto a él. Gracias por ser mi mejor apoyo en la vida y en mi carrera.

Y de manera muy especial a mi mamá: María Francia (Chabelita) †, Ana Chumpitaz † y Teodomira Mejia † su ejemplo de amor y dedicación a todas las cosas de Dios, es lo que impulsa a seguir adelante.
AGRADECIMIENTOS

La realización de esta tesis ha sido posible gracias a la colaboración de muchas personas que me brindaron su ayuda, conocimientos y su apoyo. A todas ellas quiero expresar mi agradecimiento.

Gracias, de corazón a la Lic. TM Giuliana Romero Barnechea, mi asesora de tesis, que fue además la persona que me abrió las puertas del trabajo en laboratorio y compartió mi sueño. Gracias por su amistad, su inestimable apoyo, sus consejos y acogerme como un miembro más de su familia.

Gracias, a todas las personas del Instituto de Medicina Tropical: Daniel Alcides Carrión de la Universidad Nacional Mayor de San Marcos, por su atención, amabilidad y apoyo decisivo en todo lo referente a este trabajo de investigación.

Gracias a mis queridos tíos: César Chumpitaz †, Elsa Gutiérrez †, Irma Rivera, Dora Dominguez y Noemi Chumpitaz por ofrecerme todo su apoyo y ayuda en los momentos que más las necesitaba.

Gracias al Dr. Moises Guillén, por su amistad y estima, por ser una fuente inestimable de consejos y optimismo que siempre me brindo desde que lo conocí.

Gracias al Lic Eduardo Málaga, mi primer amigo y maestro en el Hospital, gran profesional y mejor persona que ha entrado en mi vida en esta última fase de la tesis.

Gracias a la Dra. Isabel Campos, por la amistad, confianza y el apoyo que me han hecho sentir como en casa.

Gracias a Gladys Ortiz, porque cuando las fuerzas ya me habían abandonado estuvo conmigo para echarme una mano.

Gracias a mis amigos, compañeros y maestros de la UNMSM por prestarme horas de compañía y aprendizaje nunca los voy a olvidar.
ÍNDICE

RESUMEN .. 1

ABSTRACT .. 2

CAPÍTULO 1: INTRODUCCIÓN

1.1 Situación Problemática ... 4
1.2 Formulación del Problema .. 5
1.3 Justificación .. 6
1.4 Objetivos
 1.4.1 Objetivo general ... 7
 1.4.2 Objetivos específicos ... 7

CAPÍTULO 2: MARCO TEÓRICO

2.1 Antecedentes de investigación .. 9
2.2 Bases Teóricas
 2.2.1 Copaiba
 2.2.1.1 Taxonomía .. 10
 2.2.1.2 Distribución geográfica .. 11
 2.2.1.3 Aspectos generales .. 12
 2.2.1.4 Composición química del Aceite de Copaiba .. 13
 2.2.1.5 Propiedades del Aceite de Copaiba ... 13
 2.2.1.6 Usos del Aceite de Copaiba ... 13
 2.2.2 Aspectos Generales de Bacterias Patógenas
 2.2.2.1 Escherichia coli .. 14
 2.2.2.2 Staphylococcus aureus .. 15
 2.2.2.3 Pseudomonas aeruginosa .. 16
 2.2.3 Método de difusión en disco Kirby Bauer
 2.2.3.1 Fundamento ... 17
 2.2.3.2 Procedimiento .. 18
CAPÍTULO 3: METODOLOGÍA

3.1 Tipo de estudio
3.2 Población de estudio
3.3 Material biológico
3.4 Parte experimental
 - Día 1: Revitalización de las cepas
 - Día 2: Preparación del inoculo bacteriano
 - Día 2: Inoculación de las placas y aplicación de los discos
 I: Inoculación de las placas
 II: Estandarización del inoculo a depositar en los discos problema
 III: Aplicación de los discos control y problema
 - Día 3: Lectura y resultados
 Comparación de halos de inhibición obtenidos vs halos normas CLSI

CAPÍTULO 4: RESULTADOS

4.1 Interpretación de resultados

DISCUSIÓN

CONCLUSIONES

RECOMENDACIONES

BIBLIOGRAFÍA

ANEXOS

FOTOGRAFÍAS
ÍNDICE DE ANEXOS

ESQUEMA 1: INÓCULO NO ESTANDARIZADO
 Distribución de discos en placa (Método de KIRBY-BAUER)
 Escherichia coli, Pseudomonas aeruginosa y Staphylococcus aureus................. 38

ESQUEMA 2: INÓCULO ESTANDARIZADO
 Distribución de discos en placa (Método de KIRBY-BAUER)
 Escherichia coli, Pseudomonas aeruginosa y Staphylococcus aureus................. 39

ESQUEMA 3:
 MEDICIÓN HALOS DE INHIBICIÓN .. 40
ÍNDICE DE FOTOGRAFÍAS

MATERIALES Y REACTIVOS

MATERIAL BIOLÓGICO
Cepas de microorganismos... 42
Medios de cultivo... 43

REACTIVOS
Aceite de Copaiba .. 44
Set de discos controles.. 44
Set de trabajo.. 45

PARTE EXPERIMENTAL

Día 1:
Revitalización de las cepas ... 46

Día 2:
A) Preparación del inóculo bacteriano .. 47
B) Inoculación de las placas... 47

Día 2:
Aplicación de los discos problema y discos controles 48

RESULTADOS

Día 3: Lectura y resultados
Medición de los halos con el calibrador Vernier................................. 49
Batería 1 (inóculo no estandarizado).. 50
Batería 2 (inóculo estandarizado): Escherichia coli............................ 51
Batería 2 (inóculo estandarizado): Staphylococcus aureus.................. 52
Batería 2 (inóculo estandarizado): Pseudomona aeruginosa............... 53
RESUMEN

La presente tesis evalúa y determina “in vitro” la actividad antimicrobiana del aceite de Copaiba (*Copaifera paupera*) obtenido del árbol del mismo nombre, frente a las bacterias patógenas: *Escherichia coli* (ATCC 25922), *Pseudomonas aeruginosa* (ATCC 27853), *Staphylococcus aureus* (ATCC 25923).

La actividad antimicrobiana in vitro del aceite de copaiba se determinó usando la metodología de difusión en disco de Kirby-Bauer, método recomendado por Clinical and Laboratory Standards Institute (CLSI) para la determinación de la sensibilidad bacteriana a los antibióticos y estandarizado para el estudio.

Se logró establecer el volumen óptimo (5 microlitos) de aceite de Copaiba a impregnarse en los discos problemas para un adecuado efecto antimicrobiano y estandarización del método. La actividad antimicrobiana fue comparada utilizando los siguientes discos patrones: Ceftriaxona (30ug), Ciprofloxacina (5ug) y Gentamicina (10ug).

Se logró obtener un efecto antimicrobiano adecuado con la cepa de *P. aeruginosa*.

El presente estudio es de tipo descriptivo, observacional y de corte transversal.

ABSTRACT

This thesis evaluates and determines "in vitro" antimicrobial activity Copaiba oil (*Copaifera paupera*) obtained from the tree of the same name, against pathogenic bacteria: *Escherichia coli* (ATCC 25922), *Pseudomonas aeruginosa* (ATCC 27853), *Staphylococcus aureus* (ATCC 25923).

In vitro antimicrobial activity copaiba oil was determined using the disk diffusion method of Kirby-Bauer method recommended by Clinical and Laboratory Standards Institute (CLSI) for the determination of bacterial sensitivity to antibiotics and standardized for the study.

It was possible to establish the optimum volume (5 microliters) Copaiba oil to soak in trouble discs adequate antimicrobial and standardization of the method. The antimicrobial activity was compared using the following discs patterns: ceftriaxone (30ug), Ciprofloxacin (5ug) and Gentamicin (10ug).

He managed to get a suitable antimicrobial effect with the strain of *P. aeruginosa*.

The present study is a descriptive, observational and cross-sectional.

CAPÍTULO 1: INTRODUCCIÓN
1.1 SITUACIÓN PROBLEMÁTICA

La publicación del bacteriólogo escocés Alexander Fleming en 1928 sobre la penicilina, fue un hito en la medicina y enmarcó el uso de medicamentos (antimicrobianos) para el tratamiento de ciertas enfermedades causadas por bacterias\(^1\). Sin embargo a pesar que en la actualidad se dispone de una gran variedad de moléculas con demostrada actividad antimicrobiana nos enfrentamos a un grave problema: la resistencia\(^2\).

La resistencia bacteriana continúa en aumento y representa un reto terapéutico para el tratamiento de infecciones tanto adquiridas en la comunidad como en los hospitales\(^3,4\).

En la búsqueda de nuevos antibióticos, son los productos naturales, las plantas consideradas popularmente medicinales, una fuente importante en la producción de nuevos agentes antimicrobianos\(^5,6\). Es en este sentido que el uso del aceite de Copaiba como tratamiento alternativo cobra gran importancia.

El Copaiba (Copaifera paupera) es un árbol originario de Sur América, que también se encuentra en Puerto Rico y Hawaii\(^7\), y de cuyo tronco se obtiene un aceite (bálsamo) que tradicionalmente se ha utilizado como tratamiento natural para algunas enfermedades, siendo citado por primera vez en 1534 en una carta dirigida al Papa León X, en ella se le atribuía un efecto curativo de heridas\(^8\).

Algunas de las varias propiedades medicinales del aceite de copaiba han sido estudiadas como su actividad: antiséptica\(^9\), antioxidante\(^10\), antiinflamatoria\(^11,12\), cicatrizante\(^9,13,14,15\) y analgésica\(^14\) entre muchas otras.

La utilización del aceite de copaiba es por tanto antiguísima y muy difundida en el interior del país, y es en la última década que ha tenido mayor difusión en la población urbana debido principalmente a la industrialización del mismo por parte de empresas locales.
1.2 FORMULACIÓN DEL PROBLEMA

El uso medicinal del aceite de Copiaba, citado por primera vez en 15348, ha crecido considerablemente en la última década, esta aceptación ha favorecido la industrialización del mismo por parte de empresas locales conocidas. Sin embargo existen escasos estudios científicos locales que avalen sus propiedades antimicrobianas, es por eso que se realiza el presente estudio.

Por ello se plantea la siguiente pregunta:
¿Cuál es la actividad antimicrobiana “in vitro” del aceite de copaiba frente a bacterias patógenas?
Determinar la eficacia del aceite de copaiba como agente antimicrobiano es de trascendental importancia, debido al gran impacto que tiene su uso tradicional en la población como antiséptico local.

A nivel teórico, esta investigación determina la eficacia del aceite de copaiba como agente antimicrobiano, proporcionando mayor conocimiento, datos e información a los médicos, estudiantes y a las autoridades de salud pertinentes sobre las bondades terapéuticas del aceite de copaiba.

A nivel práctico, este trabajo permite dar mejores luces al conocimiento folklórico que tiene la población sobre el aceite de Copaiba, cuyo uso tradicional como antiséptico local en la población es de gran impacto.
1.4 OBJETIVOS

1.4.1 OBJETIVO GENERAL

Determinar la actividad antimicrobiana “in vitro” del aceite de copaiba frente a bacterias patógenas.

1.4.2 OBJETIVOS ESPECÍFICOS

1.- Establecer y estandarizar mediante el método de difusión de Kirby-Bauer las condiciones óptimas para el desarrollo de la prueba.

2.- Establecer el volumen óptimo (microlitros) del extracto oleoso del aceite de copaiba para lograr evidenciar una mejor y mayor lectura.

3.- Comparar la actividad antimicrobiana in vitro del aceite copaiba versus discos controles de Ceftriaxona 30 ug (CRO), Ciprofloxacina 5 ug (CIP) y Gentamicina 10 ug (GM).

CAPÍTULO 2: MARCO TEÓRICO
2.1 ANTECEDENTES DE INVESTIGACIÓN

Gonçalves, A.L y col. (2005), evaluaron la actividad antimicrobiana de los extractos hidro-alcohólicos obtenidas de 17 especies de árboles nativos de Brasil (*Anacardium occidentale*, *Pterodon emarginatus*, *Copaifera langsdorffii*, etc) en inóculos bacterianos procedentes de pacientes con infección clínica confirmada. Los corroboraron en su mayoría la eficacia el uso de los extractos de plantas nativas como agentes antimicrobianos. En el caso del aceite de Copaiba los resultados fueron satisfactorios, no se observó resistencia antimicrobiana, lo cual discrepó con la literatura consultada por el autor. De todos los microorganismos utilizados en este estudio, tres mostraron una resistencia completa a los extractos de plantas estudiadas: *Enterobacter aerogenes*, *Klebsiella pneumoniae* y *Pseudomonas aeruginosa*. El método empleado fue el de disco difusión de disco Kirby- Bauer.

Santos AO y col. (2008), investigaron la actividad antimicrobiana del aceite de Copaiba frente a bacterias gram positivas y gram negativas, levaduras y dermatofitos, hallando una actividad bactericida en las bacterias gram positivas, una actividad moderada en hongos dermatofitos(*Trichophyton rubrum* y *Microsporum canis*) y actividad nula para las bacterias gram-negativas y levaduras. Utilizaron la técnica de la microdilución en placa, definiendo la concentración bactericida mínima (MIC) como la concentración más baja de compuestos que producen una reducción del 80% en el crecimiento visible de los cultivos en comparación con el control. Los resultados concluyeron que el aceite de copaiba puede ser un nuevo y potencial agente antimicrobiano para el tratamiento de importantes enfermedades infecciosas.

Pieri et al. (2010) estudiaron la actividad antimicrobiana del aceite de Copaiba frente a bacterias gram positivas (*Streptococcus mutans*) causantes de enfermedad periodontal en canes. Los resultados mostraron una significativa actividad inhibitoria sobre las bacterias, por lo que se concluyó proponer al aceite de Copaiba como nuevo antimicrobiano para el tratamiento y prevención de enfermedad periodontal, y además como un posible reemplazo del antimicrobiano Clorhexidina. El método empleado fue el de disco difusión de disco Kirby- Bauer.
2.2 BASES TEÓRICAS

2.2.1 COPAIBA

2.2.1.1 TAXONOMÍA

NOMBRE CIENTÍFICO: Copaifera paupera
REINO: Plantae
CLASE: Magnoliophyta
ORDEN: Fabales
FAMILIA: Leguminosae
SUB FAMILIA: Caesalpiniaceae
GÉNERO: Copaifera

Copaiba, es el nombre que comúnmente designa a todo el género copaifera, tiene un origen indígena: "Cupa-yba" que significa "árbol de depósito" esto en virtud al aceite que contiene y que los nativos atribuyeron propiedades medicinales. El término Copaiba fue utilizado por primera vez por el botánico alemán Georg Marcgrave en 1628, y cuyas apreciaciones y notas sirvieron como base para que en 1760 el biólogo y botánico austriaco Nikolaus Joseph von Jacquin realice una descripción detallada de las especies estudias por Marcgrave. Años más tarde el naturalista y botánico sueco Carl von Linnée describió y clasifico correctamente a las especies del género copaifera conocidas hasta esa época.
2.2.1.2 DISTRIBUCIÓN GEOGRÁFICA

El género Copaifera agrupa alrededor de 72 especies, distribuidas en las regiones de América del Sur, Puerto Rico, Hawai y alrededor de 19 especies en África Occidental7,8,19,20, (Fig. 1)

A pesar de ello sólo algunas especies son productoras de bálsamo útil, así tenemos: \textit{Copaifera officinalis} (Perú, Brasil, Colombia, Venezuela y San Salvador), \textit{Copaifera paupera} (Perú, Brasil, Colombia), \textit{Copaifera reticulata} (Perú, Colombia, Venezuela), \textit{Copaifera multijuga} (Brasil), \textit{Copaifera guarensis} (Guyana, Costa Rica), \textit{Copaifera langsfordii} (Brasil, Argentina y Paraguay), \textit{Copaifera martii} (Brasil) y \textit{Copaifera coriácea} (Brasil)8,20,21,22,23.

![Figura 1: Regiones donde se encuentra el género Copaifera](image)

8
2.2.1.3 ASPECTOS GENERALES DEL COPAIBA

El Copaiba es un árbol originario y de amplia distribución en la amazonia de Sudamérica (Perú, Brasil, Colombia y Venezuela mayoritariamente), Puerto Rico, Hawái y África Occidental\(^7\,\,8\,\,19\,\,20\), y de cuyo tronco se obtiene una oleorresina (aceite de copaiba) que tradicionalmente es utilizado como tratamiento natural para algunas dolencias y enfermedades.

El Copaiba es propio de climas tropicales húmedos y secos, de crecimiento lento, que puede alcanzar los 40 metros de altura con un diámetro de 0.80m y vivir alrededor de 400 años\(^24\,\,25\,\,26\). Su distribución va desde los 50 m.s.n.m. hasta los 1200 m.s.n.m. en un amplio rango de suelos (ácidos y arcillosos) con buen drenaje. En el Perú se encuentra principalmente en las regiones de Loreto, Madre de Dios y Ucayali\(^9\,\,25\,\,27\).

El tronco es áspero de color oscuro. Las hojas pecioladas y alternas. Las flores hermafroditas y dispuestas en panículas axilares dan un fruto que contiene una sola semilla. La semilla es de forma ovoide, cubierta dura y color negro. La floración y fructificación del Copaiba ocurre alrededor de los 5 años\(^8\).

La madera es unas de las partes más aprovechables y extraídas en la amazonia. Es considerada una madera de gran calidad, resistente al ataque de hongos y fácil de trabajar\(^23\,\,28\). Sus principales usos son: la construcción de canoas, ebanistería, parquet, laminado, paneles y muebles\(^22\).

El aceite de copaiba, cuya denominación correcta es oleorresina de copaiba por ser un exudado compuesto de ácidos resinosos y compuestos volátiles\(^29\). Esta sustancia resinosa aromática y fluida es extraída del tronco del árbol, a manera de exudado líquido que al contacto con el aire se espesa\(^22\), y cuya gama de colores según la especie va desde un transparente, amarillo a marrón claro\(^26\).

La forma de extracción es de 2 maneras:

Método tradicional usando un hacha, y que a manera de incisión en el tronco del árbol, se hace una gran apertura para encontrar los canales longitudinales. Este método a largo plazo resulta en la muerte del espécimen.

Método sostenible, usando una cánula que se introduce, previa incisión con taladro, para poder drenar el aceite y post-recolección se tapa el agujero con arcilla para evitar que el árbol se infeste de hongos y termitas\(^8\).
2.2.1.4 COMPOSICIÓN QUÍMICA DEL ACEITE DE COPAIBA

El aceite de Copaiba se forma como producto de la descomposición de las membranas celulares en el interior del tronco del árbol y se acumulan en cavidades internas denominadas canales longitudinales. En términos biológicos podemos decir que es producto del metabolismo secundario de la planta.

La composición química del aceite es de 15% de aceites volátiles y el 85% restante por resinas y ácidos grasos. Entre las resinas con acción biológica tenemos: sesquiterpenos, diterpenos (ácido Copalico y ácido Kaurenoico) y ácidos terpénicos.

En cuanto a los ácidos grasos está formado por un 60% de ácidos grasos insaturados, y un 36% de ácidos grasos saturados como el Vaccumico, Elaídico, Linoleico, Palmítico, 7-10 octadienoico, Behénico y el Lignocerico. El 4% restante lo conforman: Ácido araquidico, 11-eicosano, esqualeno, butil hidroxitolueno y vitamina E.

2.2.1.5 PROPIEDADES DEL ACEITE DE COPAIBA

Al aceite de copaiba se le atribuyen varias propiedades curativas, algunas concedidas de la medicina folklórica de forma empírica, otras sin embargo han sido muy estudiadas como: actividad antioxidante, cicatrizante, antiinflamatoria, analgésica, anticancerosa y antiséptica.

2.2.1.6 USOS DEL ACEITE DE COPAIBA

El uso tradicional del aceite de copaiba para tratar afecciones y enfermedades, proviene de la observación (por parte de los nativos americanos) del comportamiento de ciertos animales que, al lesionarse, se frotaban sobre los troncos de las copainiferas para curar sus heridas.

El aceite de copaiba tiene en la actualidad aplicación en la industria farmacéutica para la fabricación de jabones, cosméticos y pomadas, pero es en la medicina folklórica que tiene un mayor impacto.

Tradicionalmente es usado para: a) curar dolencias de vías respiratorias: bronquitis crónica, asma; b) tratamiento de infecciones urinarias: cistitis; c) para infecciones y de la dermis: psoriasis y d) curar heridas: gastritis, úlceras.
2.2.2 ASPECTOS GENERALES DE BACTERIAS PATÓGENAS

2.2.2.1 *Escherichia coli*

Escherichia coli es probablemente el microorganismo mejor y más estudiado del mundo, cuyo genoma completo y biología se conocen desde hace algunos años\(^3\). *E.Coli* es una bacteria (bacilo) Gram negativa típica de la familia Enterobacteriaceae, que se caracteriza por ser capaz de respirar facultativamente de forma anaeróbica en el interior del intestino y aeróbicamente en el ambiente exterior. Esta característica permite a muchos miembros de la familia ser de vida libre mientras otros son principalmente comensales de animales invertebrados y vertebrados o son patógenos de plantas \(^\text{32}\).

Se considera que *E.Coli* es flora normal del colon de organismos de sangre caliente, sin embargo esto no es del todo cierto, pues existen *E.coli* patógenas que pueden encontrarse en sangre y en el tracto urogenital. Así mismo es posible encontrar *E. coli* en vertebrados de sangre fría\(^3\). *E.coli* es la primera bacteria que coloniza el intestino del hombre pocas horas después del nacimiento, adquiriendo las primeras cepas por medio del canal de parto y de las heces de la madre. Para determinar el grupo patógeno al que pertenecen Kauffman desarrolló un esquema de serotipificación que continuamente varía y que actualmente tiene 176 antígenos somáticos (O), 112 flagelares (H) y 60 capsulares (K). El antígeno “O” es el responsable del serogrupo; la determinación del antígeno somático y flagelar (O:H) indica el serotipo. *E.coli* es la bacteria más implicada en enfermedades gástricas, como la diarrea, colitis hemorrágica y síndrome urémico. Es por ello que se ha clasificado en seis grupos: *E.coli* enterotoxigenica, *E.coli* enteropatogena, *E.coli* enteroinvasiva, *E.coli* enteroagregativa, *E.coli* de adherencia difusa y *E.coli* enterohemorrágica\(^3\). De esta última podemos mencionar que constituye un peligro de salud pública por su virulencia, ya que induce una toxemia generalizada con diarrea hemorrágica y en los casos más graves, la muerte, la cual se debe a un síndrome urémico hemolítico. Para el aislamiento, la identificación y la caracterización de cepas de E. coli se aplican métodos tradicionales, métodos in vivo e in vitro y de biología molecular. El método tradicional consiste en el aislamiento de la bacteria, tomada directamente de materia fecal, para su posterior sembrado en un medio selectivo como el agar Mc Conkey, seguido de una incubación a 37\(^\circ\)C por 18 a 24 horas. Luego se seleccionan unas cinco colonias representativas del cultivo y se procede a la identificación mediante pruebas bioquímica en medios como TSI, LIA, MIO y Citrato.
2.2.2.2 *Staphylococcus aureus*

La Familia Micrococaceae comprende cocos Gram positivos, no exigentes, catalasa positivos, con agrupación en racimos, aerobios o anaerobios facultativos. Esta familia comprende tres géneros: *Micrococcus, Planococcus* y *Staphylococcus*, este último es el único de importancia médica. Dentro del género *Staphylococcus* hay 48 especies, siendo las más importantes desde el punto de vista clínico las siguientes: *Staphylococcus aureus*, *Staphylococcus epidermidis*, y *Staphylococcus saprophyticus*.

El microorganismo más importante por su patogenicidad es *S. aureus* que se caracteriza por poseer una enzima que coagula el plasma: la coagulasa. Esta prueba permite distinguir a *S. aureus* del resto de especies de estafilococos que aparecen clínicamente, que no poseen dicha enzima. Las Otras especies como *S. epidermidis* y *S. saprophyticus* son capaces de actuar como patógenos bajo determinadas circunstancias. Así *S. epidermidis* es el principal agente causal de sepsis nosocomial en neonatología y oncología\(^3^5\). La infección por *Staphylococcus* es tan antigua como la historia, siendo la especie *S. aureus* la que tiene mayor incidencia en nivel de la comunidad y hospitalario\(^3^6\). Es la responsable de infecciones que van desde superficiales (forúnculos) hasta profundas como la neumonía y endocarditis aguda. Asimismo *S. aureus* es conocido como agente infeccioso de heridas operatorias. La infección se inicia cuando acontece una ruptura en la barrera cutáneo-mucosa que precipita el paso del microorganismo a los tejidos adyacentes y al torrente sanguíneo. Recordemos que estos microorganismos forman parte de la microflora normal de la piel, mucosas y glándulas de mamíferos.

S. aureus tiene un metabolismo básicamente fermentativo, sin embargo, la presencia de la catalasa (enzima desdobladora de peróxidos) le permite desarrollarse en presencia de oxígeno y utilizar la cadena respiratoria como fuente de energía\(^3^6\). *S. aureus* es capaz de producir una muy amplia gama de sustancias, la mayoría de las cuales están implicadas en la génesis de la enfermedad.

Staphylococcus aureus es una bacteria poco exigente para el crecimiento en cultivo; crecen bien en cualquier medio ordinario, aunque lo hace mejor en medios enriquecidos a temperatura óptima entre 30-37°C. Una particularidad de los miembros del género es que crecen en medios con una concentración de \(\text{NaCl}\) que no soportan el resto de los microorganismos (bacterias halófilas). Esto permite la creación de medios de cultivo casi específicos para los estafilococos como el medio Chapman\(^3^6\).
Las colonias son visibles fácilmente, sobre todo en agar sangre, con forma redonda y aplanada, bordes netos, superficie lisa y brillante, consistencia variable, sin olor y en algunas ocasiones, hemolíticas.

2.2.2.3 *Pseudomonas aeruginosa*

Pseudomonas aeruginosa es un bacilo gram negativo flagelar perteneciente a la familia Pseudomonaceae. Es una bacteria cosmopolita, no formadora de esporas, aerobico estricto, móvil y saprofita oportunista, pues aunque presenta un bajo patogenicidad en personas saludables, produce infecciones en individuos inmunodeprimidos, pacientes con heridas quirúrgicas o aquellos sometidos a tratamiento antimicrobiano de amplio espectro36,37. Entre las infecciones, en su mayoría intrahospitalaria, que es responsable *Pseudomonas aeruginosa* están: Infecciones del tracto urinario, bacteriemia, endocarditis, neumonía, y otras infecciones sistémicas; esto debido a una alteración en la integridad de la barrera de la piel y mucosas producido por catéteres centrales, tubos endotraqueales. Estas infecciones nosocomiales pueden ser de un curso fulminante y fatal36,38.

Pseudomonas aeruginosa tiene como característica poseer una gran resistencia a una gran variedad de antimicrobianos y la capacidad de adquirir nuevos mecanismos de resistencia, esto debido a la diseminación a nivel mundial de plásmidos portadores de genes con capacidad de conferir resistencia múltiple a antimicrobianos39.

Pseudomonas aeruginosa al ser un aerobio obligado, crece con facilidad en medios de cultivo, produciendo muchas veces un olor a uvas. Los cultivos de esta bacteria pueden mostrar varios tipos de colonia: lisas, rugosas, mucoides, con pigmentos verde metálico36.
2.2.3 MÉTODO DIFUSIÓN EN DISCO DE KIRBY-BAUER

Las pruebas de susceptibilidad antimicrobiana que se llevan a cabo diariamente en los laboratorios clínicos se basan en la técnica original de Kirby-Bauer y colaboradores de 1966, siendo normalizada esta técnica en 1976 por la Organización Mundial de la Salud (OMS) en virtud a la sencillez del método y su reproducibilidad40,41.

En la actualidad, el Instituto de Normas de Laboratorio Clínico (CLSI, anteriormente NCCLS) es responsable de la actualización y modificación del procedimiento original de Kirby y Bauer a través de un proceso de consenso global.

Este método cualitativo es recomendado principalmente para el estudio de Enterobacterias42,43.

2.2.3.1 FUNDAMENTO:

Se basa en la formación en el gel de agar de una gradiente de concentración del compuesto antimicrobiano (antibiótico) a partir de un disco impregnado con una determinada cantidad del mismo.

El compuesto antimicrobiano a evaluar se impregna en un disco (papel filtro de 6mm) en cantidad específica sobre la superficie del agar (Mueller-Hinton) que previamente ha sido inoculado con un microorganismo. El disco al ponerse en contacto con la humedad del agar absorbe el agua y el antimicrobiano difunde radialmente a través del espesor del agar circundante a partir del disco formándose así una gradiente de concentración32,41.

La velocidad de difusión del agente antimicrobiano a través del agar es dependiente de las propiedades de difusión y solubilidad del antimicrobiano en agar (Mueller-Hinton)41 y del peso molecular del mismo.

Transcurridas 18 a 24 horas de incubación se observarán halos de inhibición alrededor de los discos, producto del crecimiento bacteriano, los cuales serán leídos e interpretados como sensible (S), intermedia (I) o resistente (R) según las categorías establecidas por el CLSI.

Se excluye de este método a las bacterias de crecimiento lento (mayor a 24 horas) porque desaparece la gradiente de concentración.
2.2.3.2 PROCEDIMIENTO:

Preparación Agar Mueller-Hinton

El agar Mueller-Hinton es considerado como el ideal para pruebas de susceptibilidad debido a su reproducibilidad\(^{32}\) en los ensayos de susceptibilidad y crecimiento satisfactorio para la mayoría de los patógenos no fastidiosos.

1. El agar Mueller – Hinton, preparado a partir del reactivo comercial deshidratado y de acuerdo a las instrucciones del fabricante. Se autoclava y deja enfriar.
2. Se vierte el preparado fresco y tibio a una placa petri de vidrio o plástica, de fondo plano en un nivel, superficie horizontal para dar un fondo uniforme de aproximadamente 4 mm. Esto corresponde a 25-30 mL para las placas de 100 mm de diámetro.
3. El medio de agar debe dejarse que enfríe a temperatura ambiente, y si no se usa el mismo día, debe guardarse en refrigerador (2 - 8º C).
4. Se debe controlar la esterilidad y verificar que el pH del agar sea de 7,2 al prepararse el medio y de 7,4 después de gelificar a temperatura ambiente.

Preparación del inoculo microbiológico

1. Se seleccionan de 3 a 5 colonias bien aisladas y del mismo tipo de morfología de un agar de cultivo. Se toca la colonia por arriba con un asa y el crecimiento se transfiere a un tubo con 3 a 4 mL de caldo tripticasa de soya o solución salina.
2. El caldo de cultivo es incubado a 35ºC hasta que alcance o exceda la turbidez del estándar de 0,5 McFarland (usualmente 2 horas). Esto resulta en una suspensión que contiene aproximadamente 1 a 2 x 10\(^{8}\) UCF/mL.
3. La turbidez del caldo se ajusta con solución salina estéril o con caldo tripticasa de soya para obtener una turbidez ópticamente comparable a un estándar de 0,5 McFarland. Para realizar este paso se compara visualmente, con luz adecuada, el inóculo con el estándar de 0,5 McFarland contra un fondo blanco con líneas negras contrastantes\(^{40,43}\).

48
Inoculación de placas

1. Después de ajustar la turbidez de la suspensión del inóculo, se sumerge una tórula de algodón en ella. La tórula debe ser rotada varias veces y finalmente presionada firmemente contra la pared interna del tubo para remover el exceso de inóculo.

2. Se inocula la superficie de una placa de agar Mueller-Hinton con la tórula sobre toda la superficie usando la técnica de dispersión agotamiento. Este paso es repetido dos o más veces, rotando la placa aproximadamente 60° cada vez para asegurar una distribución constante del inóculo. Como paso final se pasa sobre los bordes del agar.

3. La tapa de la placa puede quedar entreabierta por 3 a 5 minutos, para permitir que un exceso de humedad de la superficie se absorba antes de aplicar el disco con el antibiótico impregnado.

Aplicación de los discos

Se utilizan dos clases de discos: Los discos controles que contienen antibiótico y los discos problema impregnados con concentraciones variables del antimicrobiano a evaluar.

Los Discos se dispensan sobre la superficie del agar. Cada disco debe ser presionado para asegurar contacto pleno con la superficie del agar. Los discos no deben quedar a menos de 24 mm de distancia entre centros y teniendo en cuenta que un disco no debe ser relocalizado una vez que haya tomado contacto con la superficie del agar.

Incubación de las placas

Las placas son invertidas y puestas en un incubador a 37°C por un tiempo de 24 horas después de aplicados los discos.

Lectura de las placas

Se leen los halos de inhibición y se clasifica como sensible (S), intermedia (I) o resistente (R) según las categorías establecidas por el CLSI.
CAPÍTULO 3: METODOLOGÍA
3.1.- TIPO DE ESTUDIO
El presente estudio es de tipo descriptivo, observacional y de corte transversal.

3.2.- POBLACIÓN DE ESTUDIO
Se utilizaron 3 cepas: *Escherichia coli* (ATCC 25922), *Pseudomonas aeruginosa* (ATCC 27853) y *Staphylococcus aureus* (ATCC 25923).

3.3.- MATERIAL BIOLÓGICO

Cepas de microorganismos
Las cepas utilizadas en el ensayo de actividad antimicrobiana corresponden a las Americam Type Culture Collecion (ATCC), son de referencia internacional y forman parte de una batería mínima de cepas que se emplean para estos estudios.
La batería microbiana está integrada por las bacterias:

- *Escherichia coli* (ATCC 25922),
- *Pseudomonas aeruginosa* (ATCC 27853)
- *Staphylococcus aureus* (ATCC 25923)

Las cepas fueron obtenidas del cepario del Instituto de Medicina Tropical: Daniel Alcides Carrión (IMT-DAC) de la Universidad Nacional Mayor de San Marcos.

Medio de cultivo

- Agar Müller –Hinton (AMH)
- Caldo tripticasa de soya.

Reactivos

- Aceite de copaiba (*copaifera paupera*) de “Santa Natura” (Frasco por 30 mL)
- Solución salina 0.9% estéril.

Discos controles

- Disco antibiótico Ceftriaxona (CRO) 30 ug
- Disco antibiótico Gentamicina (GM) 10 ug
- Disco antibiótico Ciprofloxacina (CIP) 5 ug
3.4.- PARTE EXPERIMENTAL

La parte experimental se basó en el "Manual de procedimientos para la prueba de sensibilidad antimicrobiana por el método de disco difusión", del Instituto Nacional de Salud (Lima 2002)40.

DÍA 1: REVITALIZACIÓN DE LAS CEPAS

I.- PROCEDIMIENTO

1. Se revitalizaron las cepas: \textit{Escherichia coli} (ATCC 25922), \textit{Pseudomonas aeruginosa} (ATCC 27853) y \textit{Staphylococcus aureus} (ATCC 25923) obtenidas del cepario del IMT-DAC, para lo cual por cada especímen, se seleccionaron 3 colonias bien aisladas y del mismo tipo de morfología y se sembró en Agar Müeller-Hinton (AMH) por la técnica de dispersión y agotamiento. Se incubaron las placas por 24 horas.

2. Pasado el tiempo de incubación se verificó crecimiento, se tomó una colonia representativa y se realizó el control de calidad (coloración de gram). Este procedimiento fue igual para cada una de las 3 placas con cultivo.

DÍA 2: PREPARACIÓN DEL INÓCULO BACTERIANO

I.- PROCEDIMIENTO

1. Se seleccionan de 3 a 5 colonias bien aisladas y del mismo tipo de morfología del agar de cultivo. \textit{Escherichia coli} del agar Mc Conkey, \textit{Pseudomonas aeruginosa} del agar nutritivo y \textit{Staphylococcus aureus} del agar Manitol salado.

2. Se toca la colonia por arriba con un asa y el crecimiento se transfiere a un tubo con 2 a 3 mL de caldo tripticasa de soya. Este procedimiento es igual para cada una de las 3 cepas.
3. El caldo de cultivo es incubado a 35ºC hasta que alcance la turbidez del estándar de 0.5 McFarland (10 minutos). Esto resulta en una suspensión que contiene aproximadamente 1 a 2 x 10^8 UCF/mL.

4. La turbidez del caldo se ajustó con solución salina estéril o con caldo tripticasa de soya para obtener una turbidez ópticamente comparable a un estándar de 0.5 McFarland.

DÍA 2: INOCULACIÓN DE LAS PLACAS Y APLICACIÓN DE DISCOS
PROBLEMAS Y CONTROL

I.- PROCEDIMIENTO: INOCULACIÓN DE LAS PLACAS

En cada una de las 3 placas se procedió de la siguiente manera:

1. Después de ajustar la turbidez de la suspensión del inóculo se procede a sumergir un hisopo de algodón en el cultivo bacteriano en estudio (E.coli, P. aeruginosa, S. aureus).

2. El hisopo se roto varias veces y finalmente se presionó firmemente contra la pared interna del tubo para remover el exceso de inóculo.

3. Se inoculó (plaqueó) la superficie de una placa de agar Mueller –Hinton con el hisopo usando la técnica de dispersión agotamiento. Este paso se repitió tres veces, rotando la placa aproximadamente 60º cada vez para asegurar una distribución constante del inóculo. Como paso final se pasó el hisopo sobre los bordes del agar.

4. La tapa de la placa quedó entreabierta por 5 minutos, para permitir que el exceso de humedad de la superficie se absorba antes de aplicar los discos.
II.- PROCEDIMIENTO: ESTANDARIZACIÓN DEL INÓCULO A DEPOSITAR EN LOS DISCOS PROBLEMAS

Tomando en consideración la dosis recomendada en el inserto (santa natura): 4 gotas en 1/2 vaso de agua, es decir: 200uL en 100mL de agua, se procede a preparar una batería de dilución del aceite de copaiba.

<table>
<thead>
<tr>
<th>Tubo</th>
<th>Cantidad de aceite de copaiba</th>
<th>Cantidad de agua destilada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100uL (equivalente a 2 gotas)</td>
<td>100mL</td>
</tr>
<tr>
<td>2</td>
<td>200uL (equivalente a 4 gotas)</td>
<td>100mL</td>
</tr>
<tr>
<td>3</td>
<td>400uL (equivalente a 8 gotas)</td>
<td>100mL</td>
</tr>
</tbody>
</table>

Equivalentes a:

<table>
<thead>
<tr>
<th>Tubo</th>
<th>Cantidad de aceite de copaiba</th>
<th>Cantidad de agua destilada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 uL (equivalente a 2 gotas)</td>
<td>5 mL</td>
</tr>
<tr>
<td>2</td>
<td>10 uL (equivalente a 4 gotas)</td>
<td>5 mL</td>
</tr>
<tr>
<td>3</td>
<td>20 uL (equivalente a 8 gotas)</td>
<td>5 mL</td>
</tr>
</tbody>
</table>

Se trabajó con 2 baterías a fin de estandarizar el inóculo:

Batería 1: Inóculo no estandarizado

<table>
<thead>
<tr>
<th>Disco</th>
<th>Cantidad de aceite de copaiba</th>
<th>Cantidad de gotas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 uL</td>
<td>2 gotas</td>
</tr>
<tr>
<td>2</td>
<td>6 uL</td>
<td>2.4 gotas</td>
</tr>
<tr>
<td>3</td>
<td>7 uL</td>
<td>2.8 gotas</td>
</tr>
<tr>
<td>4</td>
<td>8 uL</td>
<td>3.6 gotas</td>
</tr>
</tbody>
</table>

Batería 2: Inóculo estandarizado

<table>
<thead>
<tr>
<th>Disco</th>
<th>Cantidad de aceite de copaiba</th>
<th>Cantidad de gotas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 uL</td>
<td>2 gotas</td>
</tr>
</tbody>
</table>
III.- **PROCEDIMIENTO: APLICACIÓN DE LOS DISCOS CONTROL Y PROBLEMA**

Se utilizaron dos clases de discos: Los discos controles que contienen antibiótico y los discos problema impregnados con concentraciones variable del aceite de Copiaba. Ambos discos son distribuidos de manera semejante.

Los discos se dispensaron sobre la superficie del agar, presionado para asegurar un contacto pleno con la superficie del agar.

1. **Distribución de los discos en la placa:**

 Batería 1: Inóculo no estandarizado
 Usando pinzas estériles, se colocó en la placa los siguientes discos (esquema 1):

 - Disco Nº 01 ….Extracto oleoso de Aceite de copaiba 5 uL………..disco problema
 - Disco Nº 02…..Extracto oleoso de Aceite de copaiba 6 uL…………disco problema
 - Disco Nº 03…..Extracto oleoso de Aceite de copaiba 7 uL…………disco problema
 - Disco Nº 04…..Extracto oleoso de Aceite de copaiba 8 uL………..disco problema

 Batería 2: Inóculo estandarizado
 Usando pinzas estériles, se colocó en la placa los siguientes discos (esquema 2):

 - Disco Nº 01 ….Extracto oleoso de Aceite de copaiba 5 uL………..disco problema
 - Disco Nº 02 ….Ceftriaxona 30 ug……………….disco antibiótico (disco control)
 - Disco Nº 03 ….Ciprofloxacina 5 ug …………….disco antibiótico (disco control)
 - Disco Nº 04 ….Gentamicina 10 ug………………..disco antibiótico (disco control)

2. Las placas fueron invertidas y colocadas en reposo por 15 minutos antes de ser puestas en la estufa.
3. Se incubaron las placas a 37 °C por 24 horas en la estufa.
4. Luego se midieron los diámetros (siempre al milímetro entero más cercano) de los halos de inhibición, tanto de los discos controles (discos antibióticos) como los discos problemas (discos impregnados con aceite de copaiba).
DÍA 3: LECTURA Y RESULTADOS

LECTURA

Se midió los diámetros de las zonas de inhibición completa (incluyendo el diámetro del disco), usando el calibrador vernier.

BATERIA 1: INÓCULO NO ESTANDARIZADO (ESQUEMA 1)

<table>
<thead>
<tr>
<th>Disco Nº</th>
<th>Inhibición</th>
<th>Escherichia coli (ATCC 25922)</th>
<th>Pseudomonas Aeruginosa (ATCC 27853)</th>
<th>Staphylococcus aureus (ATCC 25923)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 … 5 μL</td>
<td>0 mm</td>
<td>6 mm</td>
<td>0 mm</td>
<td></td>
</tr>
<tr>
<td>02 … 6 μL</td>
<td>0 mm</td>
<td>6 mm</td>
<td>0 mm</td>
<td></td>
</tr>
<tr>
<td>03 … 7 μL</td>
<td>0 mm</td>
<td>8 mm</td>
<td>6 mm</td>
<td></td>
</tr>
<tr>
<td>04 … 8 μL</td>
<td>6 mm</td>
<td>8 mm</td>
<td>8 mm</td>
<td></td>
</tr>
</tbody>
</table>

BATERIA 2: INÓCULO ESTANDARIZADO (ESQUEMA 2)

<table>
<thead>
<tr>
<th>Disco Nº</th>
<th>Inhibición</th>
<th>Escherichia coli (ATCC 25922)</th>
<th>Pseudomonas Aeruginosa (ATCC 27853)</th>
<th>Staphylococcus aureus (ATCC 25923)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0 mm</td>
<td>6 mm</td>
<td>0 mm</td>
<td></td>
</tr>
<tr>
<td>Aceite de Copiaba 5 μL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>30 mm</td>
<td>22 mm</td>
<td>25 mm</td>
<td></td>
</tr>
<tr>
<td>Ceftriaxona (CRO) 30 ug</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>24 mm</td>
<td>20 mm</td>
<td>23 mm</td>
<td></td>
</tr>
<tr>
<td>Gentamicina (GM)10 ug</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>37 mm</td>
<td>35 mm</td>
<td>28 mm</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacina (CIP) 5 ug</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMPARACIÓN DE LOS HALOS INHIBICIÓN OBTENIDOS VERSUS HALOS ESTABLECIDOS EN NORMAS CLSI

NORMAS CLSI vol. 33 N°1, M100-S23 (ENERO 2013). Performance Standards for Antimicrobial Susceptibility Testing; Twenty–Third Informational

ACEITE DE COPAIBA: 5uL

<table>
<thead>
<tr>
<th></th>
<th>Escherichia coli (ATCC 25922)</th>
<th>Pseudomonas aeruginosa (ATCC 27853)</th>
<th>Staphylococcus aureus (ATCC 25923)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resultado obtenido (mm)</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

No se encontró referencia CLSI

CEFTRIAXONA (CRO) 30 ug

<table>
<thead>
<tr>
<th></th>
<th>Valor de referencia (mm)</th>
<th>Resultado obtenido (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>19-35</td>
<td>30</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>17-23</td>
<td>22</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>22-28</td>
<td>25</td>
</tr>
</tbody>
</table>

Los diámetros de las zonas de inhibición se encuentran dentro del rango establecido

GENTAMICINA (GM)10 ug

<table>
<thead>
<tr>
<th></th>
<th>Valor de referencia (mm)</th>
<th>Resultado obtenido (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>19-26</td>
<td>24</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>17-23</td>
<td>20</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>19-27</td>
<td>23</td>
</tr>
</tbody>
</table>

Los diámetros de las zonas de inhibición se encuentran dentro del rango establecido

CIPROFLOXACINA (CIP) 5 ug

<table>
<thead>
<tr>
<th></th>
<th>Valor de referencia (mm)</th>
<th>Resultado obtenido (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>30-40</td>
<td>37</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>25-35</td>
<td>35</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>22-30</td>
<td>28</td>
</tr>
</tbody>
</table>

Los diámetros de las zonas de inhibición se encuentran dentro del rango establecido
CAPÍTULO 4: RESULTADOS
4.1 INTERPRETACIÓN DE RESULTADOS

Se realizó la lectura de diferentes concentraciones de extracto oleoso de aceite copaiba para determinar la cantidad apropiada por microlitro que se debe impregnar en el disco sin antibiótico (disco problema).

Las tablas dan los siguientes resultados con halos de inhibición expresados en milímetros (mm), donde:

1. Los controles reflejaron resultados esperados.
2. Se estandarizo a 5 uL como el volumen que permite obtener resultados óptimos, debido a la lenta absorción del aceite de copaiba en los discos.
3. Sólo en el caso de Pseudomonas aeruginosa (ATCC 27853) se obtuvo un halo de inhibición significativo.
4. En el caso de Escherichia coli (ATCC 25922) se determinó resistencia para el aceite de copaiba.
5. En el caso Staphylococcus aureus (ATCC 25923), los volúmenes utilizados de 7 y 8 uL evidencian cierto halo de sensibilidad, por lo que se sugiere usar concentraciones mayores en iguales volúmenes.
DISCUSIÓN

Diversos estudios han demostrado una actividad antioxidante10, cicatrizante9,13,14,15, antiinflamatoria11,12, analgésica13,14, anticancerosa30 y antiséptica9 del aceite de Copaiba.

Estudios para evaluar la actividad antimicrobiana evidencian una acción bactericida del aceite de copaiba sobre bacterias gram positivas y una actividad nula sobre gran negativas y levaduras14,17,26, sin embargo existen otros que evidencian una resistencia bacteriana sobre el extracto de Copaiba16.

En el presente estudio se obtuvo resultados reproducibles que demostraron una actividad antimicrobiana in vitro a considerar del aceite de copaiba sobre la cepa \textit{Pseudomonas aeruginosa} (ATCC 27853) por el método de Kirby-Bauer. Este hecho nos lleva a considerar que mayor dosis existiría una mayor actividad antimicrobiana.

Se estableció el volumen de 5 µL de aceite de Copaiba como una cantidad apropiada a dispensar sobre los discos problemas para lograr una adecuada impregnación, difusión, comparación, lectura y estandarización por el método de Kirby-Bauer.

Con respecto a la dosis usada por la población de manera tradicional de 200 µL (4 gotas) no fue posible reproducirla en el ensayo debido a la naturaleza oleosa del aceite que dificultó una adecuada impregnación y absorción del mismo en los discos problemas así como su difusión lo cual afectaba la estandarización del método.
CONCLUSIONES

1. El uso del aceite de Copaiba como agente antimicrobiano es muy difundido en nuestro medio.

2. Existen estudios semejantes que evalúan la actividad antimicrobiana in vitro del aceite de copaiba, pero con diferente metodología a la empleada en el presente estudio. En esta investigación se encontraron dificultades técnicas al momento de la estandarización debido a la naturaleza oleo-resinosa del aceite de Copaiba.

3. Se logró establecer el volumen óptimo de 5 microlitros de aceite de Copaiba para un adecuado efecto antimicrobiano y estandarización del método (disco difusión Kirby-Bauer).

4. Se logra un efecto antimicrobiano a considerar sólo para la cepa de *Pseudomonas aeruginosa* (ATCC 27853).

5. Para la cepa de *Staphylococcus aureus* (ATCC 25923) y *Escherichia coli* (ATCC 25922) no se logró un resultado satisfactorio, hallamos resistencia en estas cepas.
RECOMENDACIONES

El presente trabajo ha demostrado la actividad antimicrobiana del aceite de Copaiba in vitro, sin embargo es factible inferir las siguientes recomendaciones:

- Realizar estudios futuros para colectar mayor información relacionada y poder tener un resultado más preciso con respecto a la actividad antimicrobiana del aceite de copaiba.

- Evaluar la actividad antimicrobiana del aceite de Copaiba en cepas provenientes de aislamiento de pacientes y establecer una comparación y efectividad.
BIBLIOGRAFÍA

15. Jorge Arroyo-Acevedo, Mariano Quino-Florentini, Jaime Martínez-Heredia, Yuan Almora-Pinedo, Alex Alba-González, Martín Condor huamán-Figueroa. Efecto cicatrizante del aceite de Copaifera officinalis (copaiba), en pacientes con úlcera péptica. Anales facultad de Medicina. UNMSM. 2011

26. Mussi, M. Carolina M. Análise da atividade antimicrobiana dos óleos de dopaiba (Copaifera officinalis) e da melaleuca (Melaleuca alternifolia) sobre Fusobacterium nucleatum e Porphyromonas gingivalis: determinação das concentrações inibitórias e bactericidas mínimas e efeito de concentrações ubininbitórias sobre a agregação. 2011

43. Erna Cona T. Condiciones para un buen estudio de susceptibilidad mediante test de difusión en agar. RevChilInfect (2002);19 (Supl.2):S 77-81
ESQUEMA 1: INÓCULO NO ESTANDARIZADO

DISTRIBUCIÓN DE DISCOS EN PLACA (METODO DE KIRBY-BAUER)

Escherichia coli, Pseudomonas aeruginosa y Staphylococcus aureus

Disco N° 01.........5 µL extracto oleoso del aceite de copaiba
Disco N° 02.........6 µL extracto oleoso del aceite de copaiba
Disco N° 03.........7 µL extracto oleoso del aceite de copaiba
Disco N° 04.........8 µL extracto oleoso del aceite de copaiba
ESQUEMA 2: INÓCULO ESTANDARIZADO

DISTRIBUCIÓN DE DISCOS EN PLACA (METODO DE KIRBY-BAUER)
Escherichia coli, Pseudomonas aeruginosa y Staphylococcus aureus

Disco Nº 01...........5 µL extracto oleoso del aceite de copaiba
Disco Nº 02 (Disco control)Ceftriaxona (CRO) 30ug
Disco Nº 03 (Disco control)Gentamicina (GM) 10ug
Disco Nº 04 (Disco control)Ciprofloxacina (CIP) 5ug
ESQUEMA 3: MEDICIÓN HALOS DE INHIBICIÓN

<table>
<thead>
<tr>
<th>CEPA DE ESTUDIO</th>
<th>MEDIDA DEL HALO (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
</tr>
</tbody>
</table>

S: Sensible
I: Intermedio
R: Resistente

FECHA DE LECTURA:

<table>
<thead>
<tr>
<th>OBSERVACION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>..................</td>
</tr>
</tbody>
</table>
FOTOGRAFÍAS
MATERIALES Y REACTIVOS

MATERIAL BIOLÓGICO:

CEPAS DE MICROORGANISMOS

Microorganismo: *Escherichia coli*
Medio de cultivo: Agar Mc Conkey

Microorganismo: *Pseudomonas aeruginosa*
Medio de cultivo: Agar Müller –Hinton

Microorganismo: *Staphylococcus aureus*
Medio de cultivo: Agar sangre
MATERIALES Y REACTIVOS

MEDIOS DE CULTIVO

Agar Müller –Hinton

Caldo Tripticasa de Soya
MATERIALES Y REACTIVOS

REACTIVOS

ACEITE DE COPAIBA

SET DE DISCOS CONTROLES (DISCOS ANTIBIÓTICOS)

- Disco antibiótico Ciprofloxacina (CIP) 5 ug
- Disco antibiótico Ceftriaxona (CRO) 30 ug
- Disco antibiótico Gentamicina (GM) 10 ug
MATERIALES Y REACTIVOS

SET DE TRABAJO

CALIBRADOR VERNIER
PARTE EXPERIMENTAL

DÍA 1: REVITALIZACIÓN DE LAS CEPAS
PARTE EXPERIMENTAL

DÍA 2: A) PREPARACIÓN DEL INÓCULO BACTERIANO

B) INOCULACIÓN DE LAS PLACAS
PARTE EXPERIMENTAL

DÍA 2: APLICACIÓN DE LOS DISCOS PROBLEMAS Y DISCOS CONTROLES
RESULTADOS

DÍA 3: LECTURA Y RESULTADOS

MEDICIÓN DE LOS HALOS CON EL CALIBRADOR VERNIER

Microorganismo: *Staphylococcus aureus* (ATCC 25923)
Disco control: Ceftriaxona (CRO) 30 ug
Diámetro del halo: 25 mm

Microorganismo: *Escherichia coli* (ATCC 25922)
Disco control: Ciprofloxacina (CIP) 5 ug
Diámetro del halo: 37 mm
DÍA 3: LECTURA Y RESULTADOS

Batería 1: INÓCULO NO ESTANDARIZADO

Staphylococcus aureus
(Medio Mueller Hinton)

Escherichia coli
(Medio Mueller Hinton)

Pseudomonas aeruginosa
(Medio Mueller Hinton)
RESULTADOS

DÍA 3: LECTURA Y RESULTADOS

Batería 2: INÓCULO ESTANDARIZADO

Microorganismo: *Escherichia coli* (ATCC 25922)
Medio cultivo: Agar Mueller Hinton

Disco N° 01	Aceite de Copiaba 5 µL	0 mm
Disco N° 02	Ceftriaxona (CRO) 30 ug	30 mm
Disco N° 03	Gentamicina (GM)10 ug	24 mm
Disco N° 04	Ciprofloxacina (CIP) 5 ug	35 mm
RESULTADOS

DÍA 3: LECTURA Y RESULTADOS

Batería 2: INÓCULO ESTANDARIZADO

Microorganismo: *Staphylococcus aureus* (ATCC 25923)
Medio cultivo: Agar Mueller Hinton

<table>
<thead>
<tr>
<th>Disco Nº</th>
<th>Fármaco</th>
<th>Diámetro de inhibición (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Aceite de Copiaba 5 µL</td>
<td>0</td>
</tr>
<tr>
<td>02</td>
<td>Ceftriaxona (CRO) 30 ug</td>
<td>26</td>
</tr>
<tr>
<td>03</td>
<td>Gentamicina (GM) 10 ug</td>
<td>23</td>
</tr>
<tr>
<td>04</td>
<td>Ciprofloxacina (CIP) 5 ug</td>
<td>28</td>
</tr>
</tbody>
</table>
RESULTADOS

DÍA 3: LECTURA Y RESULTADOS

Batería 2: INÓCULO ESTANDARIZADO

Microorganismo: *Pseudomonas aeruginosa* (ATCC 27853)
Medio cultivo: Agar Mueller Hinton

<table>
<thead>
<tr>
<th>Disco Nº</th>
<th>Medicamento</th>
<th>Diámetro de inhibición (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Aceite de Copiaba 5 µL</td>
<td>6</td>
</tr>
<tr>
<td>02</td>
<td>Ceftriaxona (CRO) 30 ug</td>
<td>22</td>
</tr>
<tr>
<td>03</td>
<td>Gentamicina (GM)10 ug</td>
<td>20</td>
</tr>
<tr>
<td>04</td>
<td>Ciprofloxacina (CIP) 5 ug</td>
<td>35</td>
</tr>
</tbody>
</table>