UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS
FACULTAD DE FARMACIA Y BIOQUÍMICA
UNIDAD DE POSTGRADO

Cambios inducidos por tolueno y xileno en el estado energético y oxidativo de mitocondrias aisladas

TESIS
para optar el grado académico de Magíster en Toxicología

AUTOR
Andrés Salvador Revilla Casalino

ASESORES
Carlos Curti
María Elizabeth González Loayza

Lima – Perú
2008
DEDICATORIA

A Ana, mi esposa,
en el primer año de nuestra unión,
bendecida por Dios.
AGRADECIMIENTOS


A mi asesora Dra. Elizabeth Gonzales por su amistad, comentarios, sugerencias y continuo apoyo a lo largo de la realización del presente trabajo.

Un reconocimiento especial a mi asesor en la Universidad de São Paulo, Dr. Carlos Curti, por hacer posible mi estancia de investigación en la FCFRP donde se realizaron los ensayos presentados en esta tesis.

La realización de este trabajo no hubiera sido posible sin la movilidad concedida por la Red de Macrouniversidades de América Latina y el Caribe, la gestión de la Escuela de Postgrado de la Universidad Nacional Mayor de San Marcos y la apertura de la Universidad de São Paulo.
INDICE

RESUMEN ........................................................................................................... 4

INTRODUCCIÓN ................................................................................................. 7
OBJETIVOS ........................................................................................................ 9
MARCO TEÓRICO ............................................................................................... 10

I. CARACTERÍSTICAS QUÍMICO-TOXICOLÓGICAS DE LOS
SOLVENTES AROMÁTICOS TOLUENO Y XILENO .................. 10

II. IMPORTANCIA DE LAS FUNCIONES MITOCONDRIALES
EN LA FISIOLOGÍA CELULAR ................................................................. 12

Cadena de transporte de electrones .............................................................. 12
Respiración mitocondrial ............................................................................. 13
Generación de especies reactivas de oxígeno ............................................. 14
Fosforilación oxidativa ................................................................................ 15
Transporte de calcio ....................................................................................... 17
Transición de permeabilidad mitocondrial ............................................... 22

PARTE EXPERIMENTAL ................................................................................... 25

I. MATERIALES Y MÉTODOS ................................................................. 25

Equipos e instrumentos ............................................................................. 25
Reactivos ........................................................................................................ 25
Métodos ............................................................................................................. 26

Aislamiento de mitocondrias de hígado de rata ..................26
Medio de incubación ............................................................... 28
Soluciones de tolueno y xileno ............................................. 28
Monitoreo de la respiración mitocondrial ...................... 28
Monitoreo del potencial de la membrana mitocondrial

          interna .................................................................................................29
Estimación de la liberación de Ca$^{2+}$ .................................31
Monitoreo de la formación de H$_2$O$_2$ ................................ 32
Estimación del hinchamiento mitocondrial ..................... 33
Determinación de ATP ............................................................... 34

II. RESULTADOS ..........................................................................................36

Efectos de tolueno y xileno sobre procesos asociados a
energía en mitocondrias de hígado de rata: respiración.

potencial de membrana y liberación de Ca$^{2+}$ ................. 36

Efectos de tolueno y xileno sobre la generación de EROs
y el hinchamiento mitocondrial ........................................... 39

Efecto de tolueno y xileno sobre los niveles mitocondriales
de ATP .................................................................................................43

III. DISCUSIÓN ............................................................................................48

IV. CONCLUSIONES ....................................................................................51

REFERENCIAS BIBLIOGRÁFICAS ......................................................... 52
**RESUMEN**

Tolueno y xileno son compuestos químicos presentes en varios solventes y otros productos industriales y de laboratorio; su toxicidad para el sistema nervioso central y el hígado ha sido bien documentada. En el presente trabajo, se han estudiado los efectos in vitro de tolueno y de xileno sobre la respiración de mitocondrias aisladas de hígado de rata energizadas con succinato evaluada por medición del consumo de oxígeno, el potencial de membrana usando safranina O como indicador, la liberación de Ca$^{2+}$ usando Calcium Green 5N, la producción de especies reactivas de oxígeno (EROs) con ácido homovanílico, y los cambios en el nivel de ATP utilizando el sistema luciferina-luciferasa. El hinchamiento mitocondrial, dependiente de Ca$^{2+}$, sensible a ciclosporina A, un indicador de transición de permeabilidad de la membrana (TPM) mitocondrial, fue monitoreado con la medición de la disminución de la absorbancia aparente a 540 nm. Tolueno y xileno, a concentraciones 0.5-2.5 y 0.25-1 mM, respectivamente, estimularon la respiración de estado 4 en asociación aparente con la disipación del potencial de membrana y la liberación de Ca$^{2+}$; estos efectos de ambos solventes indican desacoplamiento mitocondrial. A concentraciones mayores (2.5 y 5 mM, respectivamente), tolueno y xileno también inhibieron el estado 3 de respiración. A concentraciones 0.1-1 mM, xileno occasionó una producción significante de EROs y un hinchamiento mitocondrial parcialmente dependiente de Ca$^{2+}$ y parcialmente sensible a ciclosporina A. A una concentración 1mM, tolueno o xileno causaron depleciones del ATP mitocondrial hasta niveles del 66.3% y 40.3%, respectivamente; las deplecciones fueron sólo ligeramente dependientes de Ca$^{2+}$. Se concluyó que el desacoplamiento mitocondrial causante de la depleción de ATP puede ser responsable de la toxicidad
celular de tolueno y en particular, de xileno, descrita por otros investigadores. En el último caso, parecen también estar involucrados la TPM y la generación de EROs.

Palabras clave: Tolueno, Xileno, Mitocondria, Desacoplamiento, Especies Reactivas de Oxígeno.
SUMMARY

Toluene and xylene are chemicals present in various solvents and other industrial and laboratory products; their toxicity to the nervous system and to the liver has been well documented. In the present work, we have studied in vitro effects of toluene and xylene on the respiration of succinate-energized isolated rat liver mitochondria, evaluated by measuring oxygen consumption, membrane potential using safranine O as indicator, Ca$^{2+}$ release using calcium green 5N, reactive oxygen species (ROS) by homovanillic acid, and ATP level changes using the luciferin-luciferase system. Ca$^{2+}$-dependent, cyclosporine A-sensitive mitochondrial swelling, an indicator of mitochondrial permeability transition (MPT), was followed by measuring the decrease of apparent absorbance at 540 nm. At 0.5-2.5 and 0.25-1 mM concentrations respectively, toluene and xylene stimulated state 4 respiration in apparent association with mitochondrial membrane potential dissipation and Ca$^{2+}$ release; these effects of both solvents indicate mitochondrial uncoupling. At higher concentrations (2.5 and 5 mM respectively) toluene and xylene also inhibited state 3 respiration. At 0.1-1 mM concentrations, xylene elicited significant ROS generation and partly Ca$^{2+}$-dependent and partly cyclosporine A-sensitive mitochondrial swelling. At 1 mM concentration, toluene or xylene caused depletions of mitochondrial ATP, amounting to respectively 66.3% and 40.3%; depletions were only slightly dependent on Ca$^{2+}$. It was concluded that mitochondrial uncoupling via ATP depletion might be responsible for the earlier described cell toxicity of toluene and in particular, of xylene. In the latter case, mitochondrial generated ROS and MPT also appear to be involved.

Keywords: Toluene; Xylene; Mitochondria; Uncoupling; Reactive oxygen species
**INTRODUCCIÓN**

Los hidrocarburos aromáticos utilizados como solventes son agentes químicos generalmente obtenidos por fraccionamiento del crudo de petróleo[1-3]; una gama de compuestos ampliamente utilizados en diversos campos de la actividad humana por sus características fisicoquímicas de hidrofobicidad y fácil evaporación adecuadas para una variedad de propósitos [4,5]. Las sustancias más representativas de este grupo son tolueno y la mezcla de sus derivados metilados m-, o- y p-xileno, utilizados en distintos procesos químicos, tanto en pequeña escala por laboratorios de investigación y desarrollo, como en producción a nivel industrial; se encuentran presentes en la forma de productos de consumo masivo, principalmente cumpliendo la función de solventes en pinturas y pegamentos. Tolueno y xileno se encuentran además en concentraciones importantes en productos combustibles como resultado del fraccionamiento incompleto del crudo de petróleo [1].

La producción y el consumo a gran escala de tolueno y xileno constituyen razones por las cuales la investigación de sus potenciales toxicológicos sobre diferentes sistemas biológicos es relevante. Por su toxicidad comprobada gran distribución y amplio uso estos agentes químicos siguen representando un riesgo para la salud de los seres humanos y del ambiente [6,7]. Ante el riesgo inminente por la presencia ubicua de estos hidrocarburos aromáticos en el medio en que vivimos es necesario continuar los esfuerzos investigativos que se han realizado intensamente para explicar los mecanismos que subyacen a su toxicidad.
Con la aplicación de conocimientos y técnicas de la Bioquímica, Farmacología y Toxicología, entre otras ciencias de la vida, es posible evaluar los efectos de los agentes químicos ajenos a los organismos vivos que actúan como xenobióticos en determinados sistemas biológicos in vitro, en células cultivadas o en organelas aisladas. Entre los sistemas biológicos más importantes que existen en todos los organismos se encuentran aquellos ligados al metabolismo oxidativo y a la transducción de energía [8]. En los organismos eucarióticos los eventos moleculares relacionados con estos procesos bioquímicos se efectúan principalmente a nivel mitocondrial. Por ello la mitocondria es considerada un blanco importante para la acción tóxica o farmacológica de los xenobióticos [9].

En el presente trabajo se inducen mediante los solventes aromáticos tolueno y xileno cambios en el estado energético y oxidativo de mitocondrias aisladas de hígado de rata monitoreados a través de una serie de ensayos in vitro.
OBJETIVOS

**Objetivo General**

Inducir mediante los solventes aromáticos tolueno y xileno cambios en el estado energético y oxidativo de mitocondrias aisladas de hígado de rata.

**Objetivos Específicos**

Evaluar el efecto de distintas concentraciones de tolueno y xileno sobre procesos relacionados con la transducción de energía y el metabolismo oxidativo en mitocondrias aisladas.

Proponer mecanismos moleculares mitocondriales para los efectos tóxicos atribuidos a tolueno y xileno.
**MARCO TEÓRICO**

I. CARACTERÍSTICAS QUÍMICO-TOXICOLÓGICAS DE LOS SOLVENTES AROMÁTICOS TOLUENO Y XILENO

La figura 1 muestra las estructuras químicas de tolueno y de sus derivados metilados m-, o- y p-xileno, compuestos orgánicos volátiles (COVs) aromáticos incluidos en productos comerciales ampliamente distribuidos como gasolinas, pinturas, pegamentos y solventes. Adicionalmente a estos propósitos de utilización, tolueno y la mezcla de los tres isómeros de xileno son mal utilizados mundialmente como agentes neuroestimulantes mediante procedimientos de inhalación [10-13]. Se ha establecido la neurotoxicidad de tolueno y xileno que se expresa en efectos sobre el sistema nervioso central con narcosis, depresión severa y muerte, habilidad reducida en pruebas cognoscitivas y de función neuromuscular, así como disminución de la capacidad auditiva y visual, entre muchos otros efectos [14-17]. La hepatotoxicidad de tolueno y xileno se ha manifiestado con alteraciones en la estructura y función hepática en trabajadores expuestos a estos solventes [18-20].

Los mecanismos de acción previamente descritos de tolueno y xileno incluyen generación de EROs y peroxidación lipídica, indicando que la mitocondria puede ser una diana potencial de estos y otros COVs [21-24]. De hecho, se han reportado estructuras mitocondriales defectuosas [25,26], así como disminución de la viabilidad celular, como consecuencia de la acción de estos compuestos [27-30].
Figura 1. Estructuras químicas y arreglos tridimensionales moleculares de tolueno y de los tres isómeros de xileno. Las moléculas fueron diseñadas empleando el programa ACD, versiones libres para Windows Chemsketch 10.0 y 3D Viewer 10.0, de la empresa Advanced Chemistry Developement, Inc.
II. IMPORTANCIA DE LAS FUNCIONES MITOCONDRIALES EN LA FISIOLOGÍA CELULAR

Las mitocondrias son capaces de convertir la energía liberada por el transporte de electrones y de almacenarla como energía de enlace en las moléculas de adenosín trifosfato (ATP) [31]. La energía almacenada de este modo es utilizada por el organismo para realizar todo trabajo mecánico, biosintético y de transporte a nivel de la célula. Así, el ATP es un compuesto con un rol protagónico por lo que cualquier interferencia con su producción o utilización constituye un mecanismo a través del cual los xenobióticos pueden expresar toxicidad aguda o crónica [9].

**Cadena de transporte de electrones**

En la membrana mitocondrial interna existe un sistema de transporte de electrones cuyos componentes se agrupan en cuatro complejos habitualmente designados por numerales romanos [32-35]. Cada complejo contiene una serie de componentes de la cadena transportadora de electrones. Los componentes de los complejos sufren oxidación o reducción mientras participan en la transferencia de electrones a lo largo de la cadena. El **complejo I (NADP-CoQ reductasa)** es la más compleja y menos comprendida de las cuatro unidades. Media la oxidación del NADH intramitocondrial generado en el ciclo de Krebs y transfiere los electrones del NADH a la coenzima Q (ubiquinona). La **succinato-CoQ reductasa (complejo II)** media la transferencia de electrones del succinato generado en el ciclo de Krebs a la coenzima Q que es oxidada. La reacción que cataliza el complejo II se muestra simplificada en la siguiente ecuación:

\[
\text{Succinato + ubiquinona} \rightleftharpoons \text{Fumarato + ubiquinol}
\]
El **complejo III (CoQ reducida-citocromo c reductasa)** media la transferencia de electrones desde la coenzima Q reducida al citocromo c. La citocromo c **oxidasa (complejo IV)** media la transferencia de electrones del citocromo c reducido al O₂ molecular. Se considera que la coenzima Q y el citocromo c son componentes móviles de la membrana mediando la transferencia de electrones entre los cuatro complejos enzimáticos.

**Respiración mitocondrial**

La reducción del oxígeno molecular a agua por la adición de cuatro electrones es la fuente principal de energía en la mayoría de organismos aerobios. Esta energía es almacenada temporalmente como un gradiente quimiosmótico a través de la membrana mitocondrial interna [36, 37].

El complejo IV debe reducir una molécula de oxígeno a dos moléculas de agua, o en su defecto liberará alguna especie de oxígeno, tal como superóxido. Un mecanismo propuesto para esto consiste en un ciclo de actividad catalítica que empieza con cuatro centros en el sitio catalítico reducido, denotados como a₃, Cu₄, hemo y Cu₄. El oxígeno se une al centro a₃ para dar una forma oxi transitoria (etapa I). El enlace O-O se rompe (etapa II), liberando un grupo hidroxilo que quedará unido al centro Cu₄ y una especie ferrilo (es decir, Fe⁴⁺=O) en el hemo. Esto requiere la transferencia de cuatro electrones a la molécula original de oxígeno: un electrón proveniente del Cu₄ y dos del a₃ (dando el estado del ferrilo +4), mientras se argumenta que el cuatro electrón viene del lado de cadena de la tirosina unida a un ligando histidina del Cu₄. El radical de tirosina resultante no tiene carga al donar un protón al átomo de oxígeno que se convierte en un hidroxilo unido a Cu₄. En la etapa III, el hemo entrega un electrón a la tirosina, mientras
un protón es captado de la fase N (lado interno de la membrana mitocondrial interna) para reprotonar la tirosina [37,38].

La etapa IV require que la especie ferrilo sea reducida a especie hidroxilo férrico (Fe$^{3+}$-OH), un proceso que requiere de un electrón y un protón, el último que proviene nuevamente de la fase N. El electrón es donado por el hemo, que sería re-reducido por transferencia de un electrón de Cu$_A$. El ciclo se completa (etapa v) con dos electrones y dos protones más que permitirán que se liberen las dos moléculas de agua y que se regenere el sitio catalítico reducido. El ciclo completo remueve cuatro protones de la fase N, que se encuentran con cuatro electrones en el sitio catalítico que se originan en el citocromo c desde la fase P (lado externo de la membrana mitocondrial interna).

**Generación de especies reactivas de oxígeno**

Ni el oxígeno molecular, debido a sus dos electrones desapareados, ni el agua, reaccionan muy fácilmente con las moléculas biológicas. Sin embargo, bajo una variedad de circunstancias, y especialmente en determinados procesos patológicos, se forman moléculas de oxígeno parcialmente reducidas y más reactivas. Las mitocondrias así también permanecen como las principales fuentes intracelulares y blanco importante de las especies reactivas de oxígeno (EROs).

La adición de un electrón al oxígeno molecular origina un anión superóxido formado espontáneamente (sin catálisis enzimática) en virtualmente todas las células aerobias como un resultado de la autooxidación de los constituyentes de la cadena de transporte de electrones. Dos moléculas de anión superóxido reaccionan simultánea o enzimáticamente como consecuencia de la actividad de la superóxido dismutasa para
formar oxígeno molecular y peróxido de hidrógeno (H₂O₂). Así, el H₂O₂ casi siempre se forma bajo condiciones en las que se genera el anión superóxido [38, 39].

El enlace oxígeno-oxígeno del H₂O₂ puede ser escindido mediante la adición de un electrón, una reacción que origina el relativamente inocuo anión hidróxido y el altamente reactiva radical hidroxilo.

**Fosforilación oxidativa**

En asociación al transporte de electrones se produce la expulsión de protones de la matriz al espacio intermembranoso. El gradiente de concentración (quimiosmóltico) de protones así originado a ambos lados de la membrana interna mitocondrial (impermeable al paso de protones) genera el potencial de membrana (Δψ) que constituye el principal componente de la fosforilación oxidativa al impulsar la síntesis de ATP vía la F₁F₀-ATP sintasa [40, 41].

La F₁F₀-ATP sintasa está compuesta de una unidad conductora de protones (F₀) y una unidad catalítica (F₁). El flujo de protones a través de la unidad F₀ ocasiona la rotación de la subunidad γ que funciona como eje del complejo. El mecanismo rotacional depende de las estructuras de las subunidades a y c de F₀. En la subunidad c cada cadena polipeptídica forma un par de α hélices que se extienden sobre la membrana. Un residuo aspartato (Asp 61) se encuentra en medio de la segunda hélice. Cuando Asp 61 entra en contacto con la parte hidrofóbica de la membrana, el residuo debe estar en la forma neutral de ácido aspártico en lugar de su forma aspartato. Entre 9 y 12 subunidades c se agregan en un anillo simétrico extendido sobre la membrana.
La subunidad **a** parece incluir en su estructura dos semi-canales de protones de tal modo que los protones pueden pasar por uno de estos canales, pero no pueden atravesar completamente la membrana. La subunidad **a** obstruye directamente el anillo compuesto de subunidades **c** con cada semi-canal interactuando directamente con una subunidad **c**. Si los residuos Asp 61 de dos subunidades **c** que están en contacto con un hemi-canal han donado sus protones de tal modo que se encuentran en la forma de aspartato, lo que es posible ya que están en un ambiente relativamente hidrofílico dentro del semi-canal. El anillo **c** no puede rotar en ambas direcciones por el impedimento de mover el residuo de aspartato (cargado) a la parte hidrofóbica de la membrana. Si el residuo aspartato es protonado a su forma neutra, el anillo **c** puede ahora rotar, pero sólo en dirección de las agujas del reloj.

Tal rotación mueve el residuo de ácido aspártico recientemente protonado para que esté en contacto con la membrana, mueve el residuo aspartato cargado del semi-canal de la matriz al semi-canal citosólico, y mueve un distinto residuo de ácido aspártico protonado de la membrana al semi-canal de la matriz. Luego el protón puede disociarse del ácido aspártico y moverse a través del semi-canal hacia el interior la matriz pobre en protones para reestablecer el estado inicial. Esta disociación es favorecida por la carga positiva de un residuo conservado de arginina (Arg 210) en la subunidad **a**. Así, la diferencia en la concentración de protones y el potencial en ambos lados de la membrana llevan a diferentes probabilidades de protonación a través de los dos semi-canales otorgando movimiento rotacional direccional.

Cada protón se mueve a través de la membrana pasando por el anillo **c** para salir por el semi-canal de la matriz. El anillo **c** se encuentra estrechamente ligado a las subunidades
γ y ε. Así, el anillo c gira, estas subunidades γ y ε también giran dentro del hexámero de 3 subunidades α y 3 subunidades β de la unidad F1. La columna exterior formada por dos cadenas b y la subunidad δ previenen la rotación del hexámero. De este modo, la rotación del anillo c originada por el gradiente de protones causa la rotación de la subunidad γ, que a su vez promueve la síntesis de ATP mediante un mecanismo de cambio de unión. El número de subunidades c en el anillo c oscila entre 10 y 14. Este número es importante porque determina el número de protones que deben transportarse para generar una molécula de ATP. Cada rotación de 360 grados de la subunidad γ origina la síntesis y la liberación de tres moléculas de ATP. Así, si existen 10 subunidades c en el anillo (tal como ha sido observado en la estructura cristalina de la ATP-sintasa mitocondrial de levadura), cada ATP generado requiere el transporte de 10/3 = 3.33 protones. De esta manera el gradiente de concentración de protones formado a ambos lados de la membrana mitocondrial interna se encuentra acoplado con la síntesis de ATP a partir de ADP.

Los agentes desacopladores disipan el Δψ, haciendo que la mitocondria no sea más capaz de sostener la síntesis de ATP [42]. Se cree que el desacoplamiento mitocondrial es un mecanismo relevante de la toxicidad de xenobióticos, especialmente en el hígado, el lugar principal de ingreso y metabolismo de estos compuestos.

**Transporte de calcio**

Las mitocondrias poseen en sí mismas una serie de reacciones enzimáticas que son sensibles a concentraciones de Ca^{2+} en el orden micromolar y que eventualmente proveen los equivalentes reductores para la cadena respiratoria [43, 44].
Las mitocondrias de vertebrados acumulan Ca^{2+} mediante un mecanismo de monotransporte (uniport) cuando son expuestas a concentraciones de Ca^{2+} en exceso de 0.5 a 1 μM. Tan solo 1 pmol mg^{-1} del colorante glicoproteico rojo de rutenio puede inhibir el canal monotransportador, indicando que su abundancia en la membrana mitocondrial interna es minúscula, lo que es consistente con los intentos fallidos, hasta la fecha, de identificar o clonar la proteína [45]. En el equilibrio el monotransportador de Ca^{2+} desarrollaría un gradiente de concentración a través de la membrana interna de no menos de 10s. Que esto no ocurra en la práctica se debe a la presencia de una vía independiente de liberación de Ca^{2+}, que en la mayoría de las mitocondrias opera como un contratransporte Ca^{2+}/nNa^{+}. Su estequiométria es controvertida, siendo electroneutral, Ca^{2+}/2Na^{+} o electrogénica, Ca^{2+}/3Na. El intercambio Na^{+}/Ca^{2+} se encuentra en mitocondrias de la mayoría de tejidos, incluyendo el corazón, el cerebro y el tejido adiposo marrón [46].

El intercambiador Na^{+}/Ca^{2+} puede ser inhibido por la droga CGP-37157 y por tetrafenilfosfonio, TPP^{+}. Este último complica claramente los experimentos en los que el TPP^{+} se utiliza simultáneamente para monitorear el Δψ. Las mitocondrias hepáticas tienen un contratransportador de Ca^{2+}/2H^{+} independiente. Cada mecanismo impulsa la liberación de de Ca^{2+} desde la matriz, requiriendo la vía acoplada a Na^{+} la intervención adicional del intercambiador de Na^{+}/H^{+} presentado anteriormente.

La existencia de la vía de liberación independiente puede ser demostrada más simplemente mediante la inhibición selectiva de la vía de recaptación con rojo de rutenio una vez que las condiciones de equilibrio se hayan obtenido. Como el inhibidor no afecta la vía de liberación, ocurre una liberación neta de Ca^{2+} desde la matriz. El
monotransportador puede además ser inhibido por otros cationes multivalentes, como Mg$^{2+}$ y lantánidos [47]. La aparente circulación simétrica del Ca$^{2+}$ a través de la membrana interna es impulsada mediante el circuito de protones y puede desde luego considerarse como un proceso ‘desacoplador’ que disipa energía. En la práctica, la razón de Ca$^{2+}$ que circula se restringe por la actividad relativamente baja de la vía de liberación, de tal modo que no más que un pequeño porcentaje del estado 4 de respiración restante es utilizado para mantener la recirculación de Ca$^{2+}$ [48].

Las dependencias distintivas de las vías de recaptación y liberación en la concentración citoplasmática y matricial, respectivamente, permiten que las mitocondrias actúen como almacenes de Ca$^{2+}$ extramitochondrial y además que regulen la actividad de las enzimas de la matriz activadas por Ca$^{2+}$. La habilidad de las mitocondrias para acumular Ca$^{2+}$ a partir de medio que contiene una concentración de Ca$^{2+}$ mayor de 0.5 μM es verdaderamente espectacular. Bajo condiciones apropiadas en exceso de Ca$^{2+}$ 1 μM por mg de proteína mitocondrial puede ser secuestrado en la matriz sin deterioro alguno de la integridad bioenergética, equivalente a una concentración de Ca$^{2+}$ total que se aproxima a 1M! Esta acumulación requiere la presencia de pirofosfato inorgánico (Pi), que es captado en paralelo. La entrada de Ca$^{2+}$ disminuye el Δψ, permitiendo que más protones sean expulsados por la cadena respiratoria. Si esto fuera el único proceso, la acumulación de Ca$^{2+}$ se detendría tan pronto como el Δψ se convierta en ΔpH. Sin embargo, en presencia de Pi externo, el ΔpH en aumento causa que el Pi entre en la matriz vía el transportador de fosfato, que efectivamente intercambia H$_2$PO$_4^-$ por OH$^-$ [49]. El transporte de fosfato tiene en este contexto dos funciones: primero, neutraliza el aumento en el pH interno; y, segundo, se compleja con el Ca$^{2+}$ acumulado para formar un ‘gel’ de fosfato de calcio, que no es un precipitado convencional, ya que
instantáneamente se disocia cuando colapsa el $\Delta\psi$, permitiendo la liberación de $\text{Ca}^{2+}$ a través del monotransportador y de Pi por el transportador de fosfato. No obstante, el ‘gel’ es osmoticamente inactivo, previniendo el hinchamiento osmótico precedido por la acumulación de iones.

La actividad del monotransportador de $\text{Ca}^{2+}$ aumenta como segundo efecto del $\text{Ca}^{2+}$ libre en el citoplasma. Cuando el $\text{Ca}^{2+}$ extramitochondrial, $[\text{Ca}^{2+}]_e$, es suficientemente alto, la conductancia del monotransportador es suficiente para la capacidad respiratoria total de la mayoría de mitocondrias mamíferas que se deben enternamente a la acumulación del catión [50]. Se ha descrito una vía de secuestro rápido de $\text{Ca}^{2+}$ de baja capacidad en mitocondrias hepáticas, conocida como RAM (del inglés rapid accumulation mode, modo de acumulación rápida); sin embargo, la naturaleza de la neutralización de cargas en este proceso aún no está clara.

La acumulación continuará hasta que la mitocondria logre disminuir la $[\text{Ca}^{2+}]_e$ a un nivel en el que la velocidad de captación y liberación se equilibren [47]. Cuando la matriz mitocondrial contiene concentraciones de $\text{Ca}^{2+}$ mayores de 10 nmol por mg de proteína en presencia de Pi en concentraciones fisiológicas, la vía de liberación se vuelve independiente del contenido de $\text{Ca}^{2+}$ en la matriz, debido aparentemente a que el $\text{Ca}^{2+}$ libre en la matriz es esencialmente amortiguado mediante la formación del ‘gel’ de fosfato de calcio [48]. El valor de $[\text{Ca}^{2+}]_e$ en el que este equilibrio cinético ocurre se conoce como el “punto de ajuste” y varía de 0.3 a 1 $\mu$M dependiendo de las condiciones de incubación. En presencia de Pi, las mitocondrias aisladas intentan disminuir la $[\text{Ca}^{2+}]_e$ al punto de ajuste y así parecen actuar como perfectos amortiguadores del $[\text{Ca}^{2+}]_e$. La mitocondria en la célula puede servir así como un almacén temporal de $\text{Ca}^{2+}$.
bajo condiciones de Ca\textsuperscript{2+} local elevado [49]. Existe una considerable incertidumbre acerca del verdadero rango de valores de la concentración de Ca\textsuperscript{2+} libre en la matriz. Bajo condiciones de carga mínima de Ca\textsuperscript{2+} en que la [Ca\textsuperscript{2+}]\textsubscript{e} se encuentra por debajo del punto de ajuste, las actividades de las enzimas activadas por Ca\textsuperscript{2+} en la matriz son consistentes con concentraciones de Ca\textsuperscript{2+} libre en la matriz en el rango de 0.5 a 2 \textmu M, es decir, existe un gradiente de concentración insignificante a través de la membrana interna.

Son tres las enzimas cuyas actividades pueden ser reguladas por las concentraciones de Ca\textsuperscript{2+} libre en la matriz en el rango 0.1 – 1 \textmu M [52]:

(a) La Piruvato deshidrogenasa fosfatasa, que retira el Pi del complejo piruvato deshidrogenada fosforilado (inactivo), permitiendo así que la V\textsubscript{max} del complejo aumente.

(b) El K\textsubscript{m} de la isocitrato deshidrogenasa ligada a NAD\textsuperscript{+} para isocitrato es disminuido por Ca\textsuperscript{2+}, permitiendo un flujo dado a través del ciclo del ácido cítrico que se conseguirá a una concentración de sustrato disminuida.

(c) La afinidad por el sustrato de la 2-oxoglutarato deshidrogenasa también se incrementa cuando el Ca\textsuperscript{2+} está en este rango de concentración.

Existen un número de condiciones en las que una respuesta hormonal que requiere una demanda aumentada de ATP resulta en Ca\textsuperscript{2+} citoplasmático elevado, que es relevado, a través de la circulación en estado de equilibrio, en Ca\textsuperscript{2+} libre en la matriz elevado. En consecuencia se aumenta la actividad del ciclo del ácido cítrico y así la reducción del NAD\textsuperscript{+} para minimizar la caída del \Delta \psi, que de otro modo acompañaría la depleción del ATP. En términos más amplios, este aspecto del transporte mitocondrial de Ca\textsuperscript{2+} es más
significante en células no excitable cuyo Cai²⁺ citoplasmático no sufre grandes excursiones, mientras que el amortiguamiento del Ca²⁺ puede ser más relevante en células excitable, particularmente neuronas, en las que los canales iónicos pueden inducir elevaciones agudas dramáticas del Ca²⁺ citoplasmático.

**Transición de permeabilidad mitocondrial**

En asociación con Ca²⁺, las EROs pueden producir la transición de permeabilidad mitocondrial (TPM), un proceso mediado por la apertura de poros de transición de permeabilidad de membrana (PTP), demostrados por el hinchamiento sensible a ciclosporina A de estas organelas [53].

La habilidad de la mitocondria de acumular Ca²⁺ es grande pero no infinita. Cuando el límite es sobrepasado existe un colapso dramático del Δψ, liberación del Ca²⁺ acumulado, hinchamiento de la matriz y ruptura de la membrana interna. Esto es la transición de permeabilidad mitocondria (TPM) [54].

Mediante la determinación de los solutos de más bajo peso molecular que continúan para proveer el soporte osmótico, ha sido posible determinar que aparece un poro en la membrana interna, el cual no es selectivamente permeable para solutos de hasta cerca de 1.5 kDa. Naturalmente la presencia de un poro semejante no es compatible con el mantenimiento del Δψ [55].

La primera sugerencia de que la TPM puede ser más que una ruptura inespecífica de la membrana vino con el descubrimiento de que el establecimiento de la TPM podía ser prevenido por el fármaco inmunosupresor ciclosporina A (CsA), que, casualmente, es
un inhibidor de la calcineurina fosfatasa dependiente de Ca$^{2+}$ [56]. En este contexto, CsA se une a una proteína llamada ciclofilina D (CyP-D) localizada en la matriz mitocondrial. La CyP-D tiene la habilidad de catalizar la isomerización de los residuos de prolina en las proteínas y así puede tener un efecto profundo sobre la estructura proteica. Un número de observaciones implican al translocador de nucleótidos de adenina (ANT) en la TPM. Primero, la carga de Ca$^{2+}$ requerida para inducir la transición es disminuida por atractilato, que estabiliza la conformación ‘c’ (citoplasmática) del translocador, pero es aumentada por el bongkrekato, que estabiliza la conformación ‘m’ (en la matriz) del ANT. En segundo lugar, la TPM es observada más fácilmente con mitocondrias aisladas incubadas en la ausencia de nucleótidos de adenina; por lo tanto, en presencia de concentraciones fisiológicas de ADP o ATP, se requieren altas cargas de Ca$^{2+}$ total para inducir la transición. Se ha propuesto que el ANT y la CyP-D pueden formar un complejo que es prevenido por la CsA. Se encontró que una columna de afinidad con CyP-D ligado retenia al ANT; interesantemente, la porina de la membrana externa VDAC también estaba presente, y pudiendo ser un componente adicional del poro de transición de permeabilidad en sitios de contacto entre las membranas interna y externa [57].

El estrés oxidativo es el factor de inducción de la TPM más importante; por tanto el acetoacetato, que oxida el NADH en la mitocondria hepática, y el t-butil hidroperóxido, que oxida la GSH, facilitan la transición. Sin embargo, cuando la TPM ocurre con altas cargas de Ca$^{2+}$ en la matriz, su inducción no parece correlacionarse directamente con el Ca$^{2+}$ libre en la matriz, [Ca$^{2+}$]$_m$, ya que es potenciada por las concentraciones elevadas de fosfato, que deben disminuir la [Ca$^{2+}$]$_m$ por formación del complejo de fosfato de calcio [58].
El desacoplamiento mitocondrial y el TPM pueden agotar el ATP, causando muerte celular por necrosis; o muerte celular por apoptosis cuando el agotamiento del ATP no es considerable [59].
PARTE EXPERIMENTAL

I. MATERIALES Y MÉTODOS

EQUIPOS E INSTRUMENTOS
- Espectrofotómetro UV/visible de arreglo de diodos (Beckman, DU 70)
- Espectrofotómetro de fluorescencia (Hitachi, F-4500)
- Fotómetro de luminiscencia (Perkin-Elmer, AutoLumat LB953)
- Homogenizador Potter-Elvehjem
- Centrífuga refrigerada (Hitachi, CF-15D2)
- Microcentrífuga refrigerada (Eppendorf, 5417R)
- Oxígrafo (Gilson Medical Electronics)

REACTIVOS
- Ratas albinas (*Ratus norvegicus*) cepa Wistar
- Sacarosa (Sigma-Aldrich)
- Ácido etilen glicol bis (-aminoetil éter)-N,N,N’,N’-tetraacético (EGTA, Sigma-Aldrich)
- Ácido N-(2-hidroxietil) piperazin-N’-(2-etansulfónico) (HEPES, Sigma-Aldrich)
- Hidróxido de potasio (Sigma-Aldrich)
- Tartrato de sodio y potasio (Sigma-Aldrich)
- Sulfato de cobre (Sigma-Aldrich)
- Carbonato de sodio (Sigma-Aldrich)
- Rotenona (Sigma-Aldrich)
- Rojo de rutenio (Sigma-Aldrich)
- Ciclosporina A (Sigma-Aldrich)
- Calcium Green 5 N (Molecular Probes)
- Safranina O (Sigma-Aldrich)
- Sal monopotásica de adenosin 5'-difosfato (ADP, Sigma-Aldrich)
- Succinato de potasio (Sigma-Aldrich)
- Kit de ensayo de luciferina-luciferasa (Sigma-Aldrich)
- Cloruro de magnesio (Sigma-Aldrich)
- Cloruro de calcio (Sigma-Aldrich)
- Tolueno (Labsynth)
- Xileno (Mallinckrodt)
- Ácido perclórico (Sigma-Aldrich)
- Dimetilsulfóxido (Sigma-Aldrich)

**Métodos**

**Aislamiento de mitocondrias de hígado de rata.**

Las mitocondrias se aislaron por centrifugación diferencial de acuerdo al método de Pedersen [60]. El precipitado mitocondrial final fue resuspendido en 1 ml de medio que contenía sacarosa 250 mM y HEPES-KOH 10mM, pH 7.2, y utilizado durante las siguientes 3 horas. El contenido de proteínas mitocondriales fue determinado espectrofotométricamente mediante la reacción del biuret.
Diagrama 1. Pasos para el aislamiento de mitocondrias de hígado de rata.
**Medio de incubación**

Las mitocondrias energizadas con succinato de potasio 5 mM (más rotenona 2.5 μM) en un medio de incubación estándar conteniendo sacarosa 125 mM, KCl 65 mM y HEPES-KOH 10 mM, pH 7.4, fueron incubadas a 30°C.

**Soluciones de tolueno y xileno**

Se prepararon soluciones stock de tolueno y xileno 0.1, 0.5 y 2 M en dimetilsulfóxido de las cuales se adicionaron con micropipetas al inicio de cada ensayo los volúmenes necesarios para obtener concentraciones de tolueno y xileno 0.1, 0.2, 0.5, 1, 2 y 5 mM en las celdas conteniendo el medio de incubación con las mitocondrias aisladas. Para los controles negativos se añadieron sobre los medios de incubación volúmenes de dimetilsulfóxido iguales a los volúmenes de las soluciones stock añadidas en cada ensayo.

**Monitoreo de la respiración mitocondrial (consumo de oxígeno)**

La respiración mitocondrial fue monitoreada polarográficamente mediante un oxígrafo equipado con un electrodo para oxígeno tipo Clark (Gilson Medical Electronics, Middleton, WI, EEUU).

La respiración de las mitocondrias aisladas se evaluó a través del cálculo de la relación ADP/oxígeno y de la Razón de Control Respiratorio (RCR) que miden el grado de acoplamiento de la mitocondria. La relación ADP/O se halló dividiendo la cantidad de ADP colocado en la cámara del oxígrafo entre la cantidad de oxígeno necesario para consumir este ADP. La RCR se calculó dividiendo la velocidad de consumo de oxígeno durante la síntesis de ATP (estado III) entre la velocidad de consumo de oxígeno tras el
agotamiento del ADP (estado IV). La RCR de las mitocondrias con que se realizaron los ensayos se encontró siempre en el rango de 4.5 a 6.0.

**Diagrama 2.** Pasos para el monitoreo de la respiración mitocondrial.

**Monitoreo del potencial de la membrana mitocondrial interna**

El potencial de la membrana mitocondrial ($\Delta \psi$) se determinó espectrofluorimétricamente utilizando safranina O 10 $\mu$M como sonda [61] y un espectrofotómetro de fluorescencia Hitachi modelo F-4500 (Tokio, Japón) en el par de longitudes de onda de excitación/emisión 495/586 nm; estos ensayos fueron realizados en presencia de EGTA 0.5 mM y $K_2HPO_4$ 10 mM.
Configurar espectrofotómetro de fluorescencia Hitachi F-4500 con los siguientes parámetros:
- Modo: barrido
- Datos: fluorescencia
- Unidad de tiempo: segundos
- Excitación: 495
- Emisión: 586
- Tiempo total: 600
- Voltaje PMT: 700 V

Pipetear en la celda del espectrofotómetro de fluorescencia:
- 1950μl de medio de incubación,
- 2μl de safranina O 10mM,
- 2μl de rotenona 2.5μM,
- Mitocondrias resuspendidas (1mg de proteína/ml)

Iniciar el registro de fluorescencia en el par de longitudes de onda 495/586 nm

Esperar que se establece la señal

Adicionar 20μl de succinato 0.5M y observar la disminución de la fluorescencia

Adicionar DMSO o tolueno o xileno 0.1, 0.2, 0.5, 1, 2 o 5 mmoles/ml

Observar inducción de cambios en el potencial de membrana demostrados por aumento de fluorescencia

**Diagrama 3.** Pasos para el monitoreo del potencial de la membrana mitocondrial interna.
Estimación de la liberación de Ca$^{2+}$

La liberación de Ca$^{2+}$ por las mitocondrias aisladas fue evaluada espectrofluorimétricamente utilizando Calcium Green 5N (Molecular Probes, OR, EEUU) 150 nM como sonda, monitoreada en el par de longitudes de onda de excitación/emisión 506/531 nm [62].

<table>
<thead>
<tr>
<th>Configurar espectrofotómetro de fluorescencia Hitachi F-4500 con los siguientes parámetros:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Modo: barrido - Datos: fluorescencia</td>
</tr>
<tr>
<td>- Unidades: segundos - Excitación: 506</td>
</tr>
<tr>
<td>- Tiempo total: 600 - Emisión: 531</td>
</tr>
<tr>
<td>- Voltaje PMT: 700 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pipetar en la celda del espectrofotómetro de fluorescencia:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 1950μl de medio de incubación,</td>
</tr>
<tr>
<td>- 2μl de CaCl$_2$ 10mM</td>
</tr>
<tr>
<td>- 2μl de Calcium Green 5N 150μM,</td>
</tr>
<tr>
<td>- 2μl de rotenona 2.5μM,</td>
</tr>
<tr>
<td>- Mitocondrias resuspendidas (1mg de proteína/ml)</td>
</tr>
</tbody>
</table>

| Iniciar el registro de fluorescencia en el par de longitudes de onda 506/531 nm |

| Esperar que se establezca la señal |

| Adicionar 20μl de succinato 0.5M y observar la disminución de la fluorescencia que indica captación de calcio por la mitocondria |

| Adicionar DMSO o tolueno o xileno 0.1, 0.2, 0.5, 1, 2 o 5 mmoles/ml |

| Observar inducción de liberación de calcio demostrada por aumento de fluorescencia |

Diagrama 4. Pasos para el monitoreo de la liberación de calcio de mitocondrias aisladas.
**Monitoreo de la formación de H$_2$O$_2$**

La generación de H$_2$O$_2$ se analizó utilizando ácido homovanílico/peroxidasa de rábano 12UI/ml en el par de longitudes de onda de excitación/emisión 312/420 nm [63].

<table>
<thead>
<tr>
<th>Configurar espectrofotómetro de fluorescencia Hitachi F-4500 con los siguientes parámetros:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Modo: barrido</td>
</tr>
<tr>
<td>- Unidades: segundos</td>
</tr>
<tr>
<td>- Tiempo total: 600</td>
</tr>
<tr>
<td>- Voltaje PMT: 700 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pipetear en la celda del espectrofotómetro de fluorescencia:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 1950µl de medio de incubación,</td>
</tr>
<tr>
<td>- 9.2µl de peroxidasa de rábano 1310UI/ml (1mg/ml),</td>
</tr>
<tr>
<td>- 8µl de ácido homovalínico 25mM,</td>
</tr>
<tr>
<td>- Mitocodrías resuspendidas (1mg de proteína/ml)</td>
</tr>
</tbody>
</table>

| Iniciar el registro de fluorescencia en el par de longitudes de onda 312/420 nm |

| Incubar 3 min a 30°C registrando la fluorescencia hasta los 100 segundos |

| Adicionar 20µl de succinato 0.5M, 2µl de rotenona 2.5µM y esperar 50 segundos |

| Adicionar DMSO, terbutilhidroperóxido 1mmol/ml o tolueno o xileno 0.1, 0.2, 0.5, 1, 2 o 5 mmoles/ml |

| Observar generación H$_2$O$_2$ demostrada en el aumento de fluorescencia |

**Diagrama 5.** Pasos para el monitoreo de la formación de H$_2$O$_2$ en mitocondrias aisladas.
Estimación del hinchamiento mitocondrial

El hinchamiento mitocondrial se estimó mediante la disminución de la absorbancia aparente a 540 nm, utilizando un espectrofotómetro Beckman modelo DU-70 (EEUU).

- Configurar espectrofotómetro multicelda DU-70 con los siguientes parámetros:
  - Longitud de onda: 540nm
  - Fuente: visible
  - Función: cinética
  - Intervalo entre celdas: 10 segundos
  - Límite superior: 1000
  - Límite inferior: 0
  - Controlador de temperatura: 30°C

- Pipetear en cada celda:
  - 1450μl de medio de incubación,
  - 1.5μl de CaCl₂ 10mM
  - 1.5μl de rotenona 2.5μM,
  - 15μl de succinato 0.5M,
  - Mitocondrias resuspendidas (0.4mg de proteína/ml)

- Registrar la absorbancia aparente a 540nm durante los 100 primeros segundos.

- Adicionar en cada celda DMSO, fosfato de potasio 1mmol/ml o tolueno o xileno 0.1, 0.2, 0.5, 1, 2 o 5

- Observar hasta los 600 segundos la disminución en la absorbancia aparente a 540nm que demuestra el hinchamiento mitocondrial.

Diagrama 6. Pasos para la estimación del hinchamiento mitocondrial.
**Determinación de ATP**

El ATP se determinó mediante el sistema de ensayo de luciferina-luciferasa de luciérnaga [64]. La suspensión de mitocondrias (1 mg de proteína/ml) se centrífugó a 9000×g durante 5 min a 4°C y el precipitado fue tratado con 1 ml de HClO₄ 1 M helado (4°C). Después de centrifugar a 14000×g durante 5 minutos a 4°C, se neutralizaron alicuotas de 100 µl de los sobrenadantes con 70 µl de KOH 2 M en solución de TRIS-HCl 100 mM, pH 7.8 (volumen final, 1 ml), y se centrifugaron a 15000×g durante 15 min. Se midió la bioluminiscencia en el sobrenadante con un kit de ensayo de Sigma/Aldrich, de acuerdo a las instrucciones del fabricante, utilizando un fotómetro de luminiscencia AutoLumat modelo LB953 (Perkin-Elmer Life Sciences, Wilbad, Alemania).

**Diagrama de procedimiento**

1. **Pipetar en un tubo de microcentrífuga de 1.5 ml:**
   - 975 µl de medio de incubación,
   - 1 µl de rotenona 2.5 µM,
   - 10 µl de succinato 0.5 M,
   - 1 µl de CaCl₂ 10 mM ó 1 µl de EGTA 10 mM,
   - Mitocondrias resuspendidas (1 mg de proteína/ml),
   - 1 µl de DMSO, o tolueno o xileno 1 M

2. **Dejar incubando por 10 minutos a temperatura ambiente**

3. **Centrifugar a 9000 g a 4°C por 5 minutos**

4. **Desechar el sobrenadante**

5. **Resuspender el pellet en 1 ml de ácido perclórico 1 M helado**

6. **Centrifugar a 14000 g a 4°C por 10 minutos**
Tomar 100μl de sobrenadante en un nuevo tubo de microcentrifuga sobre hielo.

Adicionar:
- 70μl de KOH 2M
- 830μl de Tris 0.1M pH 7.8

Centrifugar a 15000g a 4°C por 10 minutos

Pipetear 100μl de sobrenadante en el fondo del tubo para luminómetro

Preparar los estándares de ATP del kit para la curva de calibración (sobre hielo):
(a) 2x10⁻¹⁰ M  (d) 1x10⁻⁸ M  (g) 2x10⁻⁷ M
(b) 1x10⁻⁹ M  (e) 2x10⁻⁸ M
(c) 2 x10⁻⁹ M  (f) 1x10⁻⁷ M

Configurar el luminómetro AutoLumat LB953 con los siguientes parámetros:
- Inyectar reactivo: Sí
- Volumen (μl): 100
- Sustraer fondo: Sí
- Tiempo: 1.000
- Tiempo de medición: 5.000
- Usar temperatura: Sí
- Temperatura: 37°C
- Almacenar datos: Sí
- Crear archivo de hoja de calculo: Sí

El luminómetro adiciona automáticamente 100μl de la mezcla de reactivos ATP assay del kit sobre cada tubo al tiempo que mide la luminiscencia

Los resultados son registrados en una hoja de datos

**Diagrama 7.** Pasos para la determinación de ATP sintetizado en mitocondrias aisladas.
II. RESULTADOS

*Efectos de tolueno y xileno sobre procesos asociados a energía en mitocondrias de hígado de rata: respiración, potencial de membrana y liberación de Ca$^{2+}$*

Las figuras 2 y 3 muestran los efectos de tolueno y xileno, respectivamente, sobre las velocidades de fosforilación de estado 3 y basal (estado 4) de la respiración de mitocondrias incubadas con el sustrato respiratorio del sitio II succinato (+ rotenona), seguido de la adición de ADP, que inicia la respiración de estado 3. Después de haber sido consumido todo el ADP en la síntesis de ATP, la respiración es conducida al estado 4. La exposición de las mitocondrias aisladas a tolueno 0.5-2.5 mM o xileno 0.25-1 mM aumentó la velocidad de respiración del estado 4, indicando que los solventes desacoplaron en la mitocondria el transporte de electrones de la fosforilación oxidativa, actuando xileno más efectivamente que tolueno. Tolueno y xileno a concentraciones de 5 y 2.5 mM, respectivamente, causaron una fuerte inhibición tanto de la respiración de estado 3 como de estado 4, indicando una pérdida completa de la función mitocondrial asociada con energía evocada por los solventes.
**Figura 2.** Efectos de tolueno sobre la velocidad de respiración de estado 3 y estado 4 de mitocondrias aisladas de hígado de rata energetizadas con succinato. Las mitocondrias (Mit, 1.5 mg de proteínas) fueron incubadas a 30°C con succinato 5 mM + rotenona 2.5 μM (Suc) en un medio estándar conteniendo sacarosa 125 mM, KCl 65 mM y HEPES-KOH 10 mM, pH 7.4, en presencia de EGTA 0.5 mM y K2HPO4, en un volumen final de 1.5 ml; la respiración de estado 3 se inició con 0.4 μmoles de ADP. Los trazos son representativos de tres experimentos con distintas preparaciones mitocondriales. Los números son velocidades de respiración dadas como ng de átomos de O/min.
Figura 3. Efectos de xileno sobre la velocidad de respiración de estado 3 y estado 4 de mitocondrias aisladas de hígado de rata energizadas con succinato. Las mitocondrias (Mit, 1.5 mg de proteínas) fueron incubadas a 30°C con succinato 5 mM + rotenona 2.5 μM (Suc) en un medio estándar conteniendo sacarosa 125 mM, KCl 65 mM y HEPES-KOH 10 mM, pH 7.4, en presencia de EGTA 0.5 mM y K₂PO₄, en un volumen final de 1.5 ml; la respiración de estado 3 se inició con 0.4 μmoles de ADP. Los trazos son representativos de tres experimentos con distintas preparaciones mitocondriales. Los números son velocidades de respiración dadas como ng de átomos de O/min.
La figura 4 muestra cómo tolueno 2.5 mM y xileno 1 mM disiparon fuertemente el Δψ ocasionado por la provisión de energía del succinato a la mitocondria.

La figura 5 muestra los efectos de tolueno y xileno sobre la liberación de Ca$^{2+}$ por la mitocondria preincubada con este catión en concentración 10 μM. La energización de la mitocondria con succinato le permitió capturar Ca$^{2+}$, que fue retenido por lo menos durante 5 minutos. Después de la captación, se examinaron los efectos de la adición de concentraciones crecientes de tolueno y xileno. La liberación observada del Ca$^{2+}$ acumulado en las mitocondrias fue paralela a la estimulación de la respiración de estado 4, sugiriendo una relación íntima entre estos efectos.

**Efectos de tolueno y xileno sobre la generación de EROs y el hinchamiento mitocondrial**

La figura 6 muestra los efectos de tolueno y xileno sobre la generación mitocondrial de EROs: Tolueno, a concentraciones de hasta 5 mM, no causó tal efecto; en contraste xileno, desde la concentración 0.1 mM, fue significantemente efectivo en ese sentido; la generación de EROs por xileno 1 mM fue mayor que la ocasionada por el t-butil hidroperóxido, un inductor clásico de estrés oxidativo, usado en la misma concentración. Sólo xileno indujo un significante hinchamiento mitocondrial, observándose una relación estrecha entre este efecto y la habilidad para generar EROs. El hinchamiento mitocondrial usualmente refleja la inducción de un proceso de transición de permeabilidad la membrana (TPM) mitocondrial dependiente de Ca$^{2+}$, y sensible a CsA y a NEM. No obstante, es importante apreciar que aquí el hinchamiento inducido por xileno, así como el ligero proceso similar inducido por tolueno, fue sólo
Figura 4. Efectos de tolueno (A) y xileno (B) sobre el potencial de membrana de mitocondrias aisladas de hígado de rata enzimáticas con succinato. Las mitocondrias (Mit, 2 mg de proteína) incubadas en un medio estándar conteniendo sacarosa 125 mM, KCl 65 mM y HEPES-KOH 10 mM, pH 7.4, más rotenona 2.5 μM y safranina O 10 μM, en un volumen final de 2 ml, fueron enzimáticas por la adición de succinato 5 mM (Suc), estableciéndose un potencial de membrana mitocondrial. Los trazos son representativos de tres experimentos con distintas preparaciones mitocondriales.
Figura 5. Efectos de tolueno (A) y xileno (B) sobre el flujo mitocondrial de Ca²⁺ en mitocondrias aisladas de hígado de rata energizadas con succinato. Las mitocondrias (Mit, 1 mg de proteína) incubadas en el medio estándar conteniendo sacarosa 125 mM, KCl 65 mM y HEPES-KOH 10 mM, pH 7.4, más rotenona 2.5 μM, CaCl₂ 10 μM y Calcium Green SN 150 nM, en un volumen final de 2 ml, fueron energizadas por la adición de succinato 18.75 mM (Suc), permitiendo a las organelas captar Ca²⁺. RFU, unidades relativas de fluorescencia. Los trazos son representativos de tres experimentos con distintas preparaciones mitocondriales.
Figura 6. Efectos de tolueno (Tol) y xileno (Xil) en la acumulación de H₂O₂ en mitocondrias aisladas de hígado de rata energetizadas con succinato. Las mitocondrias (Mit, 1 mg de proteína) fueron incubadas en el medio estándar conteniendo sacarosa 125 mM, KCl 65 mM y HEPES-KOH 10mM, pH 7.4, con succinato 5 mM + rotenona µM (Suc) más ácido homovanílico 0.1 mM y 12 UI/ml de peroxidasa de rábano picante, en un volumen final de 2 ml. RFU, unidades relativas de fluorescencia. Los trazos son representativos de tres experimentos con distintas preparaciones mitocondriales. Se presenta el trazo de t-BHP (tert-butil hidroperóxido) para comparación.
parcialmente inhibido por CsA, por el quelante de Ca$^{2+}$, EGTA, o por el reactivo tiólico, NEM (figuras 7 y 8). EGTA y NEM inhibieron casi completamente el hinchamiento mitocondrial inducido por xileno al ser utilizados en simultáneo.

*Efecto de tolueno y xileno sobre los niveles mitocondriales de ATP*

Las figuras 9 y 10 muestran los efectos sobre el ATP de mitocondrias expuestas a tolueno o xileno. En ausencia de Ca$^{2+}$ (presencia de EGTA 100 µM), tolueno o xileno 1 mM disminuyeron los niveles de ATP a 66.3 y 40.3%, respectivamente; en presencia de Ca$^{2+}$ (ausencia de EGTA), los solventes disminuyeron los niveles de ATP a 59.4 y 30.3%, respectivamente.
**Figura 7.** Capacidad de tolueno (Tol) de ocasionar hinchamiento en mitocondrias aisladas de hígado de rata; efecto de preincubaciones con EGTA 0.1 mM, ciclosporina A (CsA) 1 μM y N-ethylmaleimida (NEM) 25 μM. Las mitocondrias (Mit, 0.4 mg de proteína) fueron incubadas en medio estándar conteniendo sacarosa 125 mM, KCl 65 mM y HEPES-KOH 10mM, pH 7.4, con succinato 5 mM + rotenona μM (Suc) más CaCl₂ 10 μM (Ca²⁺), en un volumen final de 1 ml. Los trazos son representativos de tres experimentos con distintas preparaciones mitocondriales. Se presenta el trazo de Pi (fosfato inorgánico 1 mM), un inductor clásico de TPM, para comparación.
Figura 8. Capacidad de xileno (Xil) de ocasionar hinchamiento en mitocondrias aisladas de hígado de rata; efecto de preincubaciones con EGTA 0.1 mM, ciclosporina A (CsA) 1 µM y N-etilmaleimida (NEM) 25 µM. Las mitocondrias (Mit, 0.4 mg de proteína) fueron incubadas en medio estándar conteniendo sacarosa 125 mM, KCl 65 mM y HEPES-KOH 10mM, pH 7.4, con succinato 5 mM + rotenona µM (Suc) más CaCl₂ 10 µM (Ca²⁺), en un volumen final de 1 ml. Los trazos son representativos de tres experimentos con distintas preparaciones mitocondriales. Se presenta el trazo de Pi (fosfato inorgánico 1 mM), un inductor clásico de TPM, para comparación.
**Figura 9.** Efectos de tolueno 1mM (Tol) y xileno 1 mM (Xil) sobre los niveles de ATP de mitocondrias aisladas de hígado de rata energetizadas con succinato después de 10 minutos de incubación en el medio estándar conteniendo sacarosa 125 mM, KCl 65 mM y HEPES-KOH 10mM, pH 7.4, con succinato 5 mM + rotenona µM (Suc). El medio estándar contuvo EGTA 100 µM. La gráfica muestra la media y desviación estándar de tres experimentos distintos. *Significativamente diferente del control (p<0.001). Los datos fueron analizados por ANOVA unilateral seguido de la prueba $t$ de Dunnett.
Figura 10. Efectos de tolueno 1 mM (Tol) y xileno 1 mM (Xil) sobre los niveles de ATP de mitocondrias aisladas de hígado de rata energétizadas con succinato después de 10 minutos de incubación en el medio estándar conteniendo sacarosa 125 mM, KCl 65 mM y HEPES-KOH 10mM, pH 7.4, con succinato 5 mM + rotenona μM (Suc). El medio estándar contuvo CaCl2 10 μM. La gráfica muestra la media y desviación estándar de tres experimentos distintos. *Significativamente diferente del control (p<0.001). Los datos fueron analizados por ANOVA unilateral seguido de la prueba t de Dunnett.
III. DISCUSIÓN

En el presente trabajo tolueno y xileno estimularon las velocidades de respiración de estado 4, disiparon el $\Delta \psi$ y liberaron $\text{Ca}^{2+}$ de las organelas, acciones consistentes con un efecto desacoplador, conduciendo a la depleción del ATP mitocondrial. Dicho desacoplamiento tiene el potencial de poner en peligro funciones vitales de la célula, en especial en órganos que muestran una alta demanda de energía como el cerebro y el hígado, los principales blancos toxicológicos de tolueno y xileno en humanos y otros vertebrados [25,65-67].

Xileno mostró ser un agente desacoplador más efectivo que tolueno y como tal, también más efectivo en la depleción del ATP mitocondrial. Mientras el desacoplamiento es un efecto íntimamente dependiente de la función mitocondrial, creemos que la inhibición completa de la respiración mitocondrial observada cuando se utilizaron concentraciones relativamente altas de tolueno o xileno, refleja una completa pérdida de la función mitocondrial vinculada a energía debida a acciones inespecíficas de los solventes sobre componentes de la membrana mitocondrial interna.

La estructura molecular de tolueno y xileno hace parecer improbable que un mecanismo protonoforético, que implica el paso de protones a través de la membrana mitocondrial interna, dé cuenta de sus propiedades desacopladoras. Ya que estos solventes son hidrocarburos aromáticos, sin grupos liberadores de protones, la acción por la cual desacoplan mitocondrias indica en su lugar una habilidad para interferir con las bombas de protones por su unión a sitios hidrófobos específicos de la membrana, más
probablemente proteínas, cambiando sus conformaciones y consecuentemente sus cinéticas internas. Una eventual perturbación de la fase lipídica de la membrana mitocondrial por tolueno o xileno parece improbable, ya que cuando evaluamos esta posibilidad con la sonda molecular fluorescente 1,6-difenil-1,3,5-hexatrieno (DPH), no pudimos detectar interacción significante de estos solventes con la región hidrofóbica de la bicapa lipídica.

Se sabe que la inhibición de la cadena respiratoria usualmente aumenta la generación de EROs por la mitocondria [68,69]. Específicamente, se ha propuesto a la cadena respiratoria como una fuente común de oxidantes inducibles cuando la membrana mitocondrial es dañada por su exposición a la mayoría de solventes; tolueno en particular, ha sido considerado como capaz de causar desarreglos en la membrana seguidos por la producción de superóxido [70]. A las concentraciones empleadas, en las que tolueno y xileno causaron desacoplamiento, pero no inhibición de la respiración, sólo xileno mostró la habilidad de aumentar la producción de EROs por las mitocondrias, un efecto que podría resultar del mismo tipo de interacción que conduce al desacoplamiento, es decir, uniéndose a sitios hidrofóbicos específicos al interior de la membrana interna mitocondrial.

Es notable que a pesar de las diferencias descritas, tolueno y xileno presentan sólo pequeña diferencia en su estructura química, así que creemos que ellas pueden explicarse por sus distintos coeficientes de partición aceite/agua (Log $K_{ow}$), el Log $K_{ow}$ mayor de xileno (3.16) en relación al de tolueno (2.17) [71,72], aumentando su flujo y/o su interacción con los diana de la membrana mitocondrial.
En presencia de Ca\(^{2+}\), en condiciones que usualmente involucran la producción de EROs, la mitocondria aislada puede experimentar un proceso de transición de permeabilidad (TPM), mediada por la abertura de poros de transición de permeabilidad (PTP) de membrana, y vinculados con la oxidación de grupos tiólicos de proteínas, demostrados por el hinchamiento mitocondrial sensible a CsA [53, 58]. Xileno, pero no tolueno, ocasionó un hinchamiento mitocondrial significante, en asociación aparente con la generación mitocondrial de EROs. Sin embargo, la evidencia de que dicho hinchamiento solo fue parcialmente inhibido por el agente quelante de Ca\(^{2+}\) EGTA, por el reactivo tiólico monofuncional NEM, o por el inhibidor específico ciclosporina A, sugiere que encaja sólo parcialmente con las características del proceso clásico de TPM. El hallazgo de que la presencia de Ca\(^{2+}\) no condujo a un aumento sustancial en la depleción de ATP por xileno indica que el proceso de TPM puede no ser muy relevante para la toxicidad de este compuesto en las mitocondrias.

Así, el desacoplamiento mitocondrial parece ser el principal factor responsable de la depleción de ATP, explicando potencialmente la toxicidad de xileno, y en una menor magnitud la de tolueno, observadas en diferentes tipos celulares expuestos a estos solventes, y posiblemente del mismo modo en sujetos humanos.
IV. CONCLUSIONES

1) Tolueno y xileno son compuestos químicos capaces de alterar el estado energético en las mitocondrias al ocasionar depleción del ATP por desacoplamiento de la cadena transportadora de electrones.

2) Se demuestra también que xileno es capaz de alterar el estado oxidativo de las células al aumentar la generación de EROs en la mitocondria asociada a la formación de PTPs de la membrana mitocondrial.

3) Tolueno y xileno son compuestos potencialmente tóxicos para las células eucarióticas, especialmente en aquellos tejidos con alta demanda de energía bajo la forma de ATP.
REFERENCIAS BIBLIOGRÁFICAS

effects of experimental exposure to toluene, xylene and their mixture. Pol J Occup

[15] Riihimaki V, Savolainen K. Human exposure to m-xylene: Kinetics and acute


[17] Rosenberg NL, Spitz MC, Filley CM, Davis KA, Schaumburg HH. Central
nervous system effects of chronic toluene abuse—Clinical, brainstem evoked
response and magnetic resonance imaging studies. Neurotoxicol Teratol 1988; 10:
489-495.

1990; 38: 245-258.

[19] Pyykko K. Effects of methylbenzenes on microsomal enzymes in rat liver,


[21] Mattia CJ, LeBel CP, Bondy SC. Effects of toluene and its metabolites on
cerebral reactive oxygen species generation. Biochem Pharmacol 1991; 42: 879-
882.

[22] Myhre O, Fonnum F. The effect of aliphatic, naphthenic, and aromatic
hydrocarbons on production of reactive oxygen species and reactive nitrogen species
in rat brain synaptosome fraction: the involvement of calcium, nitric oxide synthase,


[38] Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep 1997; 17: 3-8.


[63] Staniek K, Nohl H. H$_2$O$_2$ detection from intact mitochondria as a measure for one-electron reduction of dioxygen requires a non-invasive assay system. Biochim Biophys Acta 1999; 1413: 70-80.


