Sinusitis crónica: variantes anatómicas determinadas mediante tomografía helicoidal “Hospital Nacional Arzobispo Loayza, 2003-2004”

TESIS para optar el Título de: ESPECIALISTA EN OTORRINOLARINGOLOGÍA
AUTOR
VÍCTOR RAÚL VALDIVIA CALDERÓN
ASESORES: Dr. MARIO CHONG WONG; Dr. JUAN C. CHAPARRO MORANTE
LIMA – PERÚ 2004
DEDICATORIA: A mis padres que son la fuente de mi inspiración.
Sinusitis crónica: variantes anatómicas determinadas mediante tomografía helicoidal “Hospital Nacional Arzobispo Loayza, 2003-2004”
1.- INTRODUCCIÓN:

La tomografía computarizada ha llegado a ser examen radiológico de elección para el diagnóstico de Rinosinusitis crónica (RSC), en los pacientes con historia clínica y hallazgos en el examen físico sugestivo. Aunque el diagnóstico de RSC es primariamente basado en criterios clínicos, el examen tomográfico proporciona evidencias objetivas para el diagnóstico y la severidad de la enfermedad, además de referencias anatómicas que deben considerarse en la planificación quirúrgica.

Desde los años noventa, la tomografía computada ha reemplazado a las placas radiográficas clásicas en el diagnóstico de RSC, porque incrementa la sensibilidad para demostrar los engrosamientos de la mucosa y la habilidad para delinear otras características patológicas como la obstrucción del complejo osteomeatal (1). La RSC es una patología que afecta a más de 30 millones de habitantes cada año, y se estima que 200,000 casos individuales requieren tratamiento quirúrgico anualmente (2,4).

En el Perú no contamos con estadísticas publicadas, pero en el último decenio se ha apreciado su incremento progresivo llegando a representar en algunos meses alrededor de un 20 – 25% de las consultas de la especialidad en el Servicio de Otorrinolaringología del Hospital Arzobispo Loayza, convirtiéndose en un importante problema de salud, campo por investigar.

El objetivo principal de este estudio fue determinar la frecuencia de las principales variantes anatómicas de nariz y senos paranasales, determinadas por Tomografía Helicoidal en los pacientes con Rinosinusitis crónica, en los pacientes que acuden al Servicio de Otorrinolaringología en el Hospital Nacional Arzobispo Loayza.
El estudio fue realizado durante un periodo de 10 meses (Agosto 2003 – Mayo 2004), teniendo como instrumento de estudio láminas de tomografía helicoidal, de la cual se desprendió la información y se compiló a una ficha de registro a cargo del investigador y un equipo de especialistas Otorrinolaringólogo – Radiólogo.

Previamente al procesamiento se realizó un control de calidad de la información con lo que se verificó la consistencia interna; los resultados finales están presentados en tablas de doble entrada y para el análisis se emplearon las frecuencias y medidas de tendencia central.
2.- MARCO TEORICO:

2.1.- ANTECEDENTES:

La enfermedad sinusal inflamatoria es un serio problema de salud, afecta a más de 50 millones en los Estados Unidos solamente. El diagnóstico exacto y precoz en los pacientes que presentan síntomas de sinusitis es la clave del manejo de la enfermedad, como la evaluación de los factores etiológicos y condiciones subyacentes que predisponen a la diseminación amplia de la enfermedad. La mayoría de expertos están de acuerdo que la Rinosinusitis es causada por la obstrucción del movimiento muco ciliar normal de los senos paranasales principalmente en las áreas del etmoides anterior – Complejo osteomeatal. De esta manera, un buen conocimiento de la anatomía normal y fisiología de esta región es un prerrequisito para comprender la patofisiología y definir la terapia apropriada. El rol de los exámenes radiológicos es para proporcionar una presentación exacta de la morfología regional y mostrar la naturaleza y la obstrucción del complejo osteomeatal (COM).

Desde el incremento del número de los pacientes se plantea la Cirugía Endoscópica Funcional de los Senos paranasales (FESS) como régimen terapéutico para esta enfermedad. El uso adecuado de los exámenes radiológicos proporcionan “roadmap” los abordajes para el cirujano y asegurar un procedimiento exacto.
Las limitaciones de las modalidades radiológicas tradicionales llega a ser realmente complicadas cuando el Radiólogo y Otorrinolaringólogo varía el foco al seno maxilar o frontal para evaluar estructuras como el COM. Aunque en el pasado, se ponía más atención en los senos frontal y maxilar, porque se pensaba que eran las sinusitis mas prevalentes. No es sólo hasta los trabajos de Messerklinger, Proctor y Hilding, quienes demostraron que el origen de esta enfermedad se encuentra en el complejo osteomeatal, cambiando el tratamiento actual enfocado a restaurar el normal movimiento muco ciliar a través del COM.

Los planos coronales exponen las celdillas etmoidales anteriores, dos tercios superiores de la cavidad nasal, el receso del frontal y el COM de tal modo que el médico reconoce la patología existente en esta región.

Los planos axiales define mejor los tejidos blandos de la nariz, senos paranasales, orbita y compartimento intracraneal

1. Hamilos DL (7); Coolins JG (2): La prevalencia estimada de RSC en los estados Unidos de Norteamérica es del 14% con una repercusión laboral de 73 millones de días de trabajo y 2.4 billón U.S. dólares año como costo de medicación.

2. Chen Yue MD, et al (5) : reporto una prevalencia del 5% en adultos canadienses, mas frecuente en mujeres que hombres, en fumadores, bajos ingresos familiares e individuos con infecciones respiratorias bajas. No se confirmo la RSC con una evaluación topográfica.

3. Naclerio R (6). La anatomía nasal varía significativamente de paciente a paciente y alguna de ellas es mas comunes observarlas en Rinosinusitis crónica que en la población general. La significancia de estas alteraciones son determinadas por su efecto sobre el drenaje de los senos paranasales. La tomografía computada permite mostrar alteraciones anatómicas en un gran número de “sujetos sanos” de esta manera solo la combinación de la historia, examen endoscópico y el estudio tomográfico demuestran la relevancia en cada paciente individual. Entre las mas frecuentes tenemos: Desviación septal, concha bullosa(baja incidencia en la infancia sugiere que en adultos, sugiere que puede desarrollarse con la edad), curvatura paradójica del cornete medio, hipoplasia del seno maxilar (mayor incidencia en niños que en adultos), celdillas de Haller, mas raramente neumatización de la apófisis unciforme, celdillas del Agger nasi prominente.

4. Zinreich JS. (7) Las variantes anatómicas de la nariz y los senos paranasales difiere significativamente de un paciente a otro, ciertamente distintas variaciones anatómicas son halladas entre la población general. La incidencia de tales variantes son presentadas en el cuadro a continuación realizado por una serie de investigadores. La mayoría de ellos están de acuerdo que estas alteraciones pueden contribuir en algunos casos al desarrollo de la sinusitis crónica recurrente. Sin embargo, aquí hay desacuerdo sobre cual de tales variantes es la causa de la enfermedad sinusal.

5. Alho olli-Pekka (8). Realizó un estudio, para evaluar la importancia de las estructuras óseas de los senos paranasales y la función sinusal durante las infecciones virales en sujetos con y sin historia de sinusitis recurrente. Encontrando que los pacientes con historia de Rinosinusitis, presentaron una diversidad de variantes anatómicas con cambios patológicos sinusales en estudios Tomográficos (desviación septal, situación
horizontal del proceso uncinado, gran concha bullosa, curvatura paradójica del comete medio, entre los principales) mientras que en los sujetos controles solamente la presencia de celdillas de Haller fue relacionada con enfermedad del seno esfenoidal. Concluyendo, que el complejo osteomeatal y las variantes anatómicas óseas parecen tener gran impacto sobre la función de los senos paranasales durante las infecciones virales, haciendo propensos a desarrollar sinusitis en comparación a aquellos sin historia de sinusitis. Esta diferencia puede ser asociada a un riesgo incrementado para sinusitis bacteriana.

6. Hwang, meter H, et al (9): Estudio un grupo de 125 pacientes, en el Departamento de Otolariningología y Cirugía de Cabeza - Cuello y el Departamento de Radiología de Pórtland, Oregon Heath and science University; determinó la correlación entre los hallazgos tomográficos (store de Lung Mackay system) con los criterios diagnósticos de la Rinosinusitis crónica, la población estuvo conformada por 115 con criterios de RSC y 10 controles asintomáticos. Determinando que solo el 65% (75/115) de los RSC presentaron scores Lung Mackay mayores de 1 y 90% (9/10) de los asintomático de RSC tuvieron cuadros positivos. Determinando la sensibilidad de los criterios de RSC para detectar una TAC positiva fue del 89%, pero la especificidad fue pobre menos del 2%.

7. Braun H MD, Stamberger H MD (10): Evaluó casos de neumatización de los cornetes (etmoido-turbinales y maxilo-turbinales), utilizando como instrumento un tomógrafo. Concluyendo que la neumatización de los cornetes medios, superiores (etmoido-turbinales) son halladas mas frecuentemente, cuyo mecanismo aun totalmente entendido, Mientras que la neumatización de los cornetes inferiores son muy infrecuentes y solo se han reportado nueve a nivel mundial. Pero que en la practica clínica deben ser considerados antes de intentar una cirugía de la nariz y senos paranasales.

8. Shields G. and et al. (11): No encontró correlación entre la intensidad del dolor facial con la severidad de la Rinosinusitis crónica determinada por Tomografía (the Lund – McKay, Harvard, and Kennedy staging systems for RSC) P>0.05. Aunque es un síntoma frecuente de en pacientes con Rinosinusitis no es útil para predecir la severidad de la enfermedad sinusal.

2.2.- ANATOMIA RADIOLOGICA DE NARIZ Y SENOS PARANASALES:

Desde la perspectiva radiológica, La evaluación de la cavidad nasal y los senos paranasales debe ser enfocada primariamente en la “estrechez” proporcionada por las intercomunicaciones entre el etmoides y los senos relacionados. De anterior y posterior la evaluación debe primero enfocar las celdillas aéreas alrededor del receso del frontal, el pasaje entre el frontal y las celdillas etmoidales anteriores. Las celdillas aéreas y el pasaje alrededor del meato y hiato semilunar permite la comunicación entre el seno maxilar y el seno etmoidal anterior deben ser estudiados a parte. Estas celdillas aéreas representan el COM anterior. Finalmente el receso esfenotmoidal y las celdillas del
etmoides posterior, así como también el seno esfenoidal. Estas últimas estructuras representan el COM posterior.

2.2.1. - COMPLEJO OSTEOMEATAL ANTERIOR:

Anteriormente conocido como conducto nasofrontal, el término “receso frontal” es ahora el termino preferido para este espacio aéreo entre la porción inferomedial del seno frontal y el meato medio anterior. Actualmente el receso del frontal se describe como un reloj de arena (no tubular). Varias celdillas etmoidales anteriores que rodean el receso frontal, pueden afectar la permeabilidad y drenaje mucociliar del frontal y del etmoides anterior. Estas celdillas incluyen el Agger Nasi, las celdillas etmoidales supraorbitarias, la bulla etmoidal y, las celdas frontales.

![Imágenes de CT tridimensional (A-C) y una vista Endoscópica (D) revelan la localización del receso frontal (flecha curva), meato medio anterior (M), receso suprabullar (asterisco), Bulla etmoidal (B), y proceso Uncinado (U)](image)

El Agger Nasi está situado debajo del seno frontal, alcanza la fosita lacrimal infero lateralmente y anterolateralmente y, es arqueado por el hueso nasal. Limitado por el piso del ostium del seno frontal, apoyado anterior, lateral e inferiormente al receso frontal. En un estudio de Zinreich et al., y Bolger(12-13) encontraron que la celdilla de Agger Nasi fue encontrada en casi todos los miembros de una población (98.5%), este alto porcentaje podría sugerir que esta celdilla es parte de la anatomía nasal normal, sin embargo algunas investigaciones reportan una incidencia baja de un 3 a 23.6% (14) Esta discrepancia puede ser debida a varias definiciones de esta celdilla, algunos autores consideran solamente celdas grandes que se extiendan mas allá de los parámetros descritos arriba, mientras que otros consideran cualquier estructura ajustada a la descripción mencionada; que podría ser la explicación de las variaciones entre los reportes. Cuando de utiliza el CT, las celdas de Agger Nasi son fácilmente detectadas e incluso cuando son pequeñas. Sin embargo, en las disecciones anatómicas estas celdas son más difíciles de hallarlas y los reportes de manera similar, tienen una gran variación.
2.- MARCO TEORICO:

FIG 2: Receso del seno frontal, Apófisis unciforme (UP), Bulla etmoidal (BE), Seno frontal (FS), Cornete superior (ST), Cornete medio (MT), Cornete inferior(IT).

Celda etmoidal supraorbitaria se desarrollan como una extensión del frontal o del receso suprabullar, tienen una localización súperolateral cerrada próximalmente por la orbita, se ubica en la pared posterior del receso frontal y posterolateral del seno frontal

Celda Frontal Descritas inicialmente por J. Parson Schaeffer, es una variante infrecuente, se halla detrás del Agger Nasi y obstruir el receso del frontal. Bent et al. Definió más específicamente y los clasificó de la siguiente manera.

- Tipo I: Celda simple en el receso del frontal, por encima del Agger Nasi
- Tipo II: Fila de celdillas en el receso frontal, por encima del Agger Nasi.
- Tipo III: Neumatización masiva única dentro del seno frontal
- Tipo IV: Celda única dentro del seno frontal.

FIG 3: Celdillas del receso frontal

El drenaje del seno frontal y el laberinto etmoidal anterior es proporcionado por el receso frontal hacia el infundíbulo y meato medio. El ostium del seno frontal, receso frontal, ostium del seno maxilar, meato medio, infundíbulo y meato medio, infundíbulo y celdas etmoidales anterior, conforman el complejo osteomeatal. En 1986 Stammberger describió este espacio como una “hendidura estrecha del etmoides anterior” Manteniendo esta hipótesis Messerklinger, Proctor y Hilding, Stammberger determinaron que mas del 90% de las sinusitis recurrentes se originaban en estas fisuras.

Desde el receso del frontal el mucus fluye directamente dentro del meato medio hacia el proceso uncinado, dentro del infundíbulo etmoidal mas lateralmente o sobre la bulha etmoidal mas posteriormente (Fig. 4) El meato medio es un espacio entre el cornete medio y la pared medial del proceso uncinado y la bulha etmoidal.
El proceso Uncinado, es una extensión de la pared lateral nasal, (pared medial del seno maxilar), anteriormente fusionado con pared pósteromedial de la celda del Agger Nasi y la pared posterior del conducto naso lacrimal (Fig.5). El proceso Uncinado tiene un borde súperoposterior “libre”; lateralmente este borde, limita con el infundíbulo y lateralmente el infundíbulo está limitado por la pared orbitaria inferomedial. De esta manera el infundíbulo se encuentra entre la pared orbitaria y el proceso Uncinado.

El infundíbulo es el espacio que conecta primariamente el ostium del seno maxilar hacia el meato medio a través del hiato semilunar anterior. Anteriormente limitado por el proceso uncinado porción ánteromedial y hacia posterior con la pared de medial de la bulla etmoidal. En su porción posterior (hiato semilunar posterior), este espacio proporciona comunicación entre el receso retrobullar (sinus laterales) y el meato medio.
2.2.2. - COMPLEJO OSTEOMEATAL POSTERIOR:

Las relaciones entre el seno esfenoidal y las celdillas del seno etmoidal posterior deben ser comprendidas de manera exacta por el cirujano para evitar complicaciones durante la cirugía. Esta morfología es ampliamente expuesta en los cortes axiales y mejor con la reconstrucción en tres dimensiones; en algunos pacientes esta neumatización es mayor comparado con el seno esfenoidal. En cortes paramedianos (plano sagital) el seno esfenoidal es mas superior y posterior, pero mas lateralmente (1.5-2cm del septum nasal), el seno esfenoidal esta situado mas inferiormente y el seno etmoidal se ubica en una posición pósterosuperior.

El seno esfenoidal usualmente encaja dentro del clivus y limita con la silla turca posterosuperiormente, su ostium es antero superiormente del septum y se visualiza perfectamente con los cortes sagitales. Este ostium, así como de las celdas etmoidales posteriores drenan por detrás de la lámina basal a nivel del meato superior a través del receso esfenomoidale (entre la pared anterior del esfenoides y celdas etmoidales posteriores.

FIG 7: Receso esfenomoidale (CT- sagital – 3D). Receso esfenomoidale (Líneas punteadas), Ostium del seno etmoidal (flechas en blanco), seno esfenoidal (S)

El seno esfenoidal puede presentar reptaciones en dirección vertical, las cuales pueden rodear a la carótida interna o al nervio óptico que deben ser evaluadas en el prequirúrgico para evitar lesiones en estas estructuras. Los tabicamientos horizontales por lo general es la división con el etmoides posterior y no representaría una septación.
FIG 8: Ostium del seno esfenoidal (CT axiales). Ostium del seno esfenoidal (flecha en blanco), seno esfenoidal (S).

FIG 9: “Reptaciones horizontales” en el seno esfenoidal (CT - coronal). Seno etmoidal (E) que se extiende sobre el seno esfenoidal (S).

No es infrecuente observar neumatizaciones posteriores del septúm nasal, el ostium de estas celdillas están siempre comunicadas al seno esfenoidal, estas celdas también pueden infectarse y sufrir cambios inflamatorios. Finalmente uno debe ser siempre cuidadoso y prudente en distinguir si se trata de una patología neoplásica o encefalocele. El MRI nos puede ayudar a aclarar en estas entidades
2.2.3- VARIANTES ANATOMICAS:

Las variantes anatómicas en la nariz y los senos paranasales han ido identificándose cada vez con más frecuencia con el advenimiento de la Tomografía computarizada (7), contribuyendo de manera significativa a entender la compleja anatomía de la nariz y de los senos paranasales y explicar la fisiopatología de algunas enfermedades de esta parte del tracto respiratorio. Manifestándose por obstrucción mecánica, disfunción ventilatoria, disfunción del movimiento muco ciliar y comportándose como un reservorio piógeno.

Entre las principales variantes anatómicas de acuerdo a su ubicación en sentido Antero posterior tenemos:

- Celdillas del Agger nasi
- Neumatización de los cornetes
- Celdillas de Haller (Hailer)
- Bulla etmoidal
- Curvatura paradójica del cornete medio
- Neumatización de la apófisis pterigoides
- Celdillas de Onodi
- Neumatización de la apófisis clinoides
- Neumatización del septum nasal,
- Neumatización de la apófisis crista galli, estre otras.
Sinusitis crónica: variantes anatómicas determinadas mediante tomografía helicoidal “Hospital Nacional Arzobispo Loayza, 2003-2004”
3.- PRESENTACION DE RESULTADOS:

La Rinosinusitis crónica es una enfermedad que en un porcentaje importante no responde al tratamiento médico convencional y requiere un enfoque quirúrgico para mejorar el clearance mucociliar.

Dentro de las técnicas clásicas para el tratamiento quirúrgico tenemos la cirugía de Caldwell luc en la cual se abordaba al seno maxilar a través de su pared anterior, se remueve las secreciones y se permeabiliza con una legra el infundíbulo ampliando el orificio de drenaje. Referente al abordaje del seno frontal, tenemos el Abordaje externo de Linch, en el cual se practica una incisión sobre el reborde orbitario súpero interno, se ingresa a cavidad y se amplía el drenaje del receso frontal.

Con el advenimiento de la cirugía Endoscópica se viene realizando cirugías funcionales (FESS), destinadas a mejorar específicamente el drenaje de los complejos osteomeatales, reduciéndose los tiempos quirúrgicos, de hospitalización y recuperación. Pero estos procedimientos requieren un conocimiento meticuloso de la anatomía, así como de las variaciones en la anatomía de la nariz y senos paranasales y evitar de esta manera las complicaciones que pudieran presentarse.

El presente trabajo se realizó durante un periodo de 10 meses (Julio 2003 – Abril 2004), teniendo una población de 94 pacientes, de los cuales 85 cumplieron los criterios de inclusión, de ellos el 60% son de sexo femenino y el 40% masculino. El rango de edad oscila entre 18 y 79 años, con un promedio de 37.7 años.

TABLA 01: DISTRIBUCION SEGÚN SEXO
Sinusitis crónica: variantes anatómicas determinadas mediante tomografía helicoidal “Hospital Nacional Arzobispo Loayza, 2003-2004”

<table>
<thead>
<tr>
<th></th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMENINO</td>
<td>51</td>
<td>60.0</td>
</tr>
<tr>
<td>MASCULINO</td>
<td>34</td>
<td>40.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>85</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Entre las cinco principales variantes anatómicas encontramos: Las celdillas del Agger nasi, la desviación del Septum nasal, alteraciones de la apófisis unciforme, la bulla etmoidal y la Neumatización del cornete medio con porcentajes que oscilan entre el 40 y 65% de frecuencia.

TABLA N°2: PRINCIPALES VARIANTES ANATOMICAS EN PACIENTES CON RINOSINUSITIS CRONICA

<table>
<thead>
<tr>
<th>Nº</th>
<th>TIPO DE VARIANTE ANATOMICA</th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agger nasi</td>
<td>55</td>
<td>64.7</td>
</tr>
<tr>
<td>2</td>
<td>Desviación septal</td>
<td>51</td>
<td>60.0</td>
</tr>
<tr>
<td>3</td>
<td>Alteraciones en la apófisis unciforme</td>
<td>47</td>
<td>55.3</td>
</tr>
<tr>
<td>4</td>
<td>Bulla etmoidal</td>
<td>45</td>
<td>52.9</td>
</tr>
<tr>
<td>5</td>
<td>Neumatización del cornete medio</td>
<td>34</td>
<td>40.0</td>
</tr>
<tr>
<td>6</td>
<td>Curvatura paradójica del cornete medio</td>
<td>30</td>
<td>35.3</td>
</tr>
<tr>
<td>7</td>
<td>Celdillas de Haller</td>
<td>18</td>
<td>21.2</td>
</tr>
<tr>
<td>8</td>
<td>Celdillas de Onodi</td>
<td>18</td>
<td>21.2</td>
</tr>
<tr>
<td>9</td>
<td>Septum neumatizado</td>
<td>12</td>
<td>14.1</td>
</tr>
<tr>
<td>10</td>
<td>Extensión lateral del esfenoides</td>
<td>10</td>
<td>11.8</td>
</tr>
<tr>
<td>11</td>
<td>Neumatización de la apófisis Clinoides</td>
<td>4</td>
<td>4.8</td>
</tr>
<tr>
<td>12</td>
<td>Hipoplasia frontal unilateral</td>
<td>4</td>
<td>4.8</td>
</tr>
<tr>
<td>13</td>
<td>Hipoplasia de esfenoides</td>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>14</td>
<td>Neumatización de la apófisis pterigoides</td>
<td>2</td>
<td>2.4</td>
</tr>
<tr>
<td>15</td>
<td>Neumatización de la apófisis crista galli</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>16</td>
<td>Hipoplasia maxilar</td>
<td>1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

El 60% de los pacientes con Rinosinusitis crónica, presentó desviación septal de diversos grados de obstrucción, de ellos el 94% se localizan a nivel de las áreas 3 y 4 de Cottle Tabla 03.

TABLA 03: DESVIACIÓN DEL SEPTUM NASAL

<table>
<thead>
<tr>
<th>ÁREA DE DESVIACIÓN</th>
<th>LADO DE LA DESVIACIÓN</th>
<th>TOTAL</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DERECHA</td>
<td>IZQUIERDA</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>3/4</td>
<td>13</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>28</td>
<td>85</td>
</tr>
</tbody>
</table>

"Programa Cybertesis PERÚ - Derechos son del Autor"
3.- PRESENTACION DE RESULTADOS:

Referente a la neumatización de los cornetes, se encontró un 40% de concha bullosa en el cornete medio, con una distribución casi uniforme entre las formas lamelar, bullosa y global. Tabla 04

TABLA 04: NEUMATIZACION DEL CORNETE MEDIO

<table>
<thead>
<tr>
<th>TIPO</th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMELAR</td>
<td>13</td>
<td>15.3</td>
</tr>
<tr>
<td>BULBOSA</td>
<td>8</td>
<td>9.4</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>13</td>
<td>15.3</td>
</tr>
<tr>
<td>NORMAL</td>
<td>51</td>
<td>60.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>85</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Con relación a la presencia de desviación paradójica del cornete medio, se determinó en el 25.5% de los pacientes, de los cuales el 80% unilateralmente, con diversas formas “S” o “E” invertidas. Tabla 05

TABLA 05: CURVATURA PARADOJICA DEL CORNETE MEDIO

<table>
<thead>
<tr>
<th></th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DERECHA</td>
<td>8</td>
<td>10.4</td>
</tr>
<tr>
<td>IZQUIERDA</td>
<td>8</td>
<td>10.4</td>
</tr>
<tr>
<td>BILATERAL</td>
<td>4</td>
<td>4.7</td>
</tr>
<tr>
<td>NORMAL</td>
<td>65</td>
<td>74.5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>85</td>
<td>100.0</td>
</tr>
</tbody>
</table>

En un porcentaje mayor del 50% de los pacientes se encontró alteraciones a nivel de la apófisis unciforme, donde predomina casi en la totalidad, el desplazamiento medial de su ángulo (horizontalización) y la compresión entre la bulla etmoidal y las alteraciones de la concha bullosa determinando un colapso. Tabla 06

TABLA 06: ALTERACIONES EN LA APOFISIS UNCIFORME

<table>
<thead>
<tr>
<th>ALTERACIÓN</th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORIZONTALIZACIÓN</td>
<td>42</td>
<td>49.4</td>
</tr>
<tr>
<td>COLAPSO</td>
<td>5</td>
<td>5.9</td>
</tr>
<tr>
<td>NORMAL</td>
<td>38</td>
<td>44.7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>85</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Por otro lado, se encontró un 12% de pacientes con celdillas de Haller a nivel del infundíbulo del seno maxilar, de diferentes tamaños y en forma uni o bilateral. Tabla 07

TABLA 07: CELDILLAS DE HALLER
Se determinó en el 50% de pacientes la presencia de bullas etmoidales, en el que predomina la presentación bilateral en 36/45 pacientes. Ver tabla 08

TABLA 08: BULLA ETMOIDAL

<table>
<thead>
<tr>
<th></th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DERECHA</td>
<td>3</td>
<td>4.5</td>
</tr>
<tr>
<td>IZQUIERDA</td>
<td>5</td>
<td>5.9</td>
</tr>
<tr>
<td>BILATERAL</td>
<td>10</td>
<td>11.8</td>
</tr>
<tr>
<td>NORMAL</td>
<td>67</td>
<td>78.8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>85</td>
<td>100.0</td>
</tr>
</tbody>
</table>

A nivel de del receso del frontal se encontró que dos tercios de los pacientes presentan celdillas de Agger nasi y en 8/55 además presentan celdillas dentro del seno frontal. Tabla 09

TABLA 09: CELDILLAS DEL AGGER NASI

<table>
<thead>
<tr>
<th></th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DERECHA</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>IZQUIERDA</td>
<td>2</td>
<td>2.3</td>
</tr>
<tr>
<td>BILATERAL</td>
<td>52</td>
<td>61.2</td>
</tr>
<tr>
<td>NORMAL</td>
<td>30</td>
<td>35.3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>85</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Cerca del 25% de pacientes presenta las celdillas de Onodi, con invaginaciones hacia la cavidad orbitaria y proyección del nervio óptico, de ellos la mayor parte la presentación fueron bilateral.

TABLA 10: CELDILLAS DE ONODI

<table>
<thead>
<tr>
<th></th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DERECHA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IZQUIERDA</td>
<td>6</td>
<td>7.1</td>
</tr>
<tr>
<td>BILATERAL</td>
<td>12</td>
<td>14.1</td>
</tr>
<tr>
<td>NORMAL</td>
<td>67</td>
<td>78.8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>85</td>
<td>100.0</td>
</tr>
</tbody>
</table>
3.- PRESENTACION DE RESULTADOS:

Finalmente, presentamos una tabla donde se relaciona la desviación septal con otras anomalías del cornete medio (concha bullosa, curvatura paradójica) y bulla etmoidal, teniendo en cuenta el lado de afectación. Donde se aprecia un mayor número de defectos en el lado contralateral a la desviación en todos los casos, Tabla 11.

TABLA 11: RELACION DE LA DESVIACION SEPTAL Y ALTERACIONES DEL CORNETE MEDIO – BULLA ETMOIDAL

<table>
<thead>
<tr>
<th>Lado de la variante</th>
<th>Desviación septal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concha bullosa ipsilateral</td>
<td>05</td>
</tr>
<tr>
<td>Concha bullosa contralateral</td>
<td>10</td>
</tr>
<tr>
<td>Cornete paradójico ipsilateral</td>
<td>06</td>
</tr>
<tr>
<td>Cornete paradójico contralateral</td>
<td>12</td>
</tr>
<tr>
<td>Bulla etmoidal ipsilateral</td>
<td>06</td>
</tr>
<tr>
<td>Bulla etmoidal contralateral</td>
<td>02</td>
</tr>
</tbody>
</table>
4.- DISCUSIÓN DE LOS RESULTADOS:

Aunque la anatomía de la nariz y de los senos paranasales difiere significativamente de paciente a paciente, es necesario determinar cual de estas variantes anatómicas se presenta con mas frecuencia entre la población general así como en los pacientes con RSC. El estudio es la primera fase de una investigación, y tiene por finalidad brindar información sobre las principales alteraciones anatómicas en pacientes con RSC que permita a los cirujanos Otorrinolaringólogos planificar la cirugía endoscópica funcional y evaluar las áreas potenciales de riesgo.

En los últimos años, la tomografía computada se ha convertido en el Gold Standard en la evaluación y planeamiento quirúrgico para la RSC. Este examen proporciona detalles anatómicos excelentes de los tejidos blandos y óseos, llegando a ser un componente importante para el diagnóstico vinculado a la evaluación clínica. Por otro lado, es necesario resaltar que existen estudios donde se identifican incidentalmente anormalidades anatómicas en sujetos asintomáticos en un rango del 27 – 45% de casos (16,17) que deben ser valoradas.

Tuvimos una población de 94 pacientes, de los cuales en nueve casos fueron excluidos por el antecedente de traumatismo nasal previo, finalmente nuestra muestra estuvo conformada por 85 pacientes adultos con diagnóstico de Rinosinusitis crónica, con una edad promedio de 37.7 años, de los cuales el 60% de sexo femenino y el 40% masculino.

Referente a los resultados, empezaremos a analizar las alteraciones encontradas en el cornete medio, que por su ubicación juega un rol importante en la patología del
complejo osteomeatal. Alrededor del 40% de los pacientes con RSC presenta una neumatización anómala, mas conocida como concha bullosa, de presentación unilateral en la mayor parte 20/34 casos. Por otro lado, la curvatura paradójica de este cornete se presentó en el 40%, de igual manera mas frecuente de forma unilateral 16/20. Estas variantes son importantes porque condicionan un estrechamiento del infundíbulo etmoidal y el desplazamiento lateral de la apófisis unciforme o el meato medio. En nuestro estudio, estas alteraciones fueron dos veces mas frecuentes que otras investigaciones como los de Sarna (18),Zinreich (12),Bolger (13).

Por otro lado, debemos evaluar la simetría de los senos paranasales y las alteraciones en su desarrollo, debiendo tener en cuenta la posibilidad hallar hipoplasias sinusales, que antes del advenimiento de la tomografía, los estudios de RX convencionales nos mostraban “opacidades”, eran manejados erróneamente como cuadros de RSC. Hallamos que el 9.5% de los estudios presentaron hipoplasia en los senos paranasales, distribuido de la siguiente manera: En el seno frontal (04), seno esfenoidal (03) y seno maxilar (01). Estos resultados son comparables con los datos presentados por otros autores (18).

Referente al septum nasal, debemos recordar que es una estructura conformada por una porción ósea, cartilaginosa y uniones fibrosas; conformando una pared recta. Sin embargo una variante frecuente es la desviación de estas estructuras especialmente a nivel de las uniones del cartílago cuadrangular, la lamina perpendicular del etmoides y el vómer; arqueamiento que puede desplazar lateralmente el cornete medio y comprometer el meato medio. Observamos que el 60% de los casos presenta desviación septal, ubicado preferentemente áreas 3 y 4 de Cottle en la mayor parte del grupo 48/51. En este estudio, se excluyó a los pacientes con traumatismo nasal, por lo que puede sugerirse esta deformación septal a alteraciones del desarrollo osteocartilaginoso. Además, describimos una mayor frecuencia de concha bullosa, bulla etmoidal y cornete medio paradójico en el lado contralateral a la desviación del tabique nasal, comparado con el lado ipsilateral. Observación que esta de acuerdo con los reportes de U. Kemal y Cols. (23), donde incluso encuentra asociación estadísticamente significativa entre el tamaño de la neumatización y la angulación del septum.

Asimismo se encontró neumatización del septum nasal en el 12% de los pacientes evaluados, ubicado casi en su totalidad en la lámina perpendicular del etmoides en su proximidad con la apófisis crista galli y el seno esfenoidal.

Referente a la importancia de la celdilla del Agger nasi y su papel sobre el receso frontal, en la literatura tenemos resultados muy variados, donde sobresale los reportes de Zinreich y Bolger (12,13), quienes lo encuentran en casi la totalidad de sus pacientes. Sin embargo, en otros estudios como el de Messeklinger (19) y Kosling (20), hallándose en el 15 – 23% de la población general. En Nuestro estudio la celdilla del Agger nasi se encontró en 55 (65%) de casos; y además, en 8 (10%) celdillas dentro del seno frontal (por encima del Agger nasi). Estructuras que condicionan un estrechamiento del receso del seno frontal y en casos de gran tamaño incluso la obstrucción involucraría el ostium del seno maxilar. Consecuentemente muchos autores (21,22) catalogan la presencia de esta celdilla como un factor para RSC recurrente. Llama la atención un análisis estadístico presentado por Bolger (13), en la cual no encontró diferencia estadísticamente
significativa entre la presencia de las celdillas del Agger nasi y RSC y pacientes asintomáticos. Siguiendo, que además de su hallazgo es importante determinar el tamaño de esta celdilla, su ubicación y la inflamación mucosa para factor de riesgo.

La bulla etmoidal es una celdilla aérea que se ubicada directamente sobre y posterior al infundíbulo y al hiato semilunar, su excesivo crecimiento y neumatización puede perjudicar la adecuada ventilación y drenaje, convirtiéndose en un riesgo potencial de sinusitis. La hallamos en más del 50% de los pacientes evaluados presentan bulla etmoidal agrandada, cifra que duplica o triplica otros reportes (12,13,24).

Referente a las alteraciones de la apófisis uniciforme, observamos que casi la mitad de pacientes presenta una desviación de su eje hacia medial (angulación menor a 140°, con referencia a la pared lateral de la nariz), es decir Horizontalizado y por lo general asociado con una bulla etmoidal concomitante. Por otro lado, en un pequeño porcentaje de pacientes la apófisis uniciforme se halló comprimida entre la bulla etmoidal y la concha bullosa; alteraciones que pueden explicar las alteraciones del complejo osteomeatal.

Como otras variantes asociadas encontramos las celdillas de Haller en un quinto de los pacientes, comparable con otros estudios (12,13, 24). Esta celdilla hay que tenerla presente durante la sinusotomía maxilar endoscópica, porque pueden ser tan grandes que puede llevarnos a error al interpretarla como seno maxilar.

La celdilla esfenofrontal (Onodi) debe buscarse en los estudios preoperatorios por su relación con el paquete del nervio óptico, que puede estar incluido dentro de la invaginación lateral de las celdillas etmoidales posteriores. En la literatura existen estudios que determinan la prevalencia de las celdas de Onodi en la población, pero han usado diferentes métodos y consecuentemente sus resultados varían ampliamente, Habal (25) Maniscalco – Habal (26) reportaron un 25% utilizando disección transorbitaria;Kainz – Stammberger (27) reportó un 42% utilizando disección endoscópica. Pero las evaluaciones tomográficas reportaron prevalencias menores entre el 1.3 – 8% (28,29).

Finalmente, entre las variantes anatómicas con menor frecuencia (menor al 5%), encontramos a la neumatización de las apófisis Clinoides, pterigoides y extensiones laterales hacia el ala mayor del esfenoides, neumatización de la apófisis crista galli.
Sinusitis crónica: variantes anatómicas determinadas mediante tomografía helicoidal “Hospital Nacional Arzobispo Loayza, 2003-2004”
5.- LAS CONCLUSIONES Y RECOMENDACIONES

- Una de las claves para la prevención de complicaciones quirúrgicas durante la cirugía endoscópica es entender el complejo osteomeatal como una unidad anatómica que debe ser evaluada mediante estudios tomográficos tanto en sus cortes coronales y axiales.

- Los pacientes no deben ser evaluados con estudios TAC durante la fase aguda de una sinusitis o rinitis, porque el edema y la congestión mucosa oblitera las estructuras nasales, encubriendo anomalías anatómicas subyacentes. Por lo cual, previamente se recomienda el que estos pacientes sean tratados con descongestionantes y/o antihistamínicos. Sin embargo, si se sospecha de complicaciones como los abscesos orbitarios, subperióstico; deben ser desarrolladas para la valoración del proceso agudo.

- La valoración tomográfica, debe analizarse en el prequirúrgico de los pacientes con Rinosinusitis crónica, útil para determinar las variantes anatómicas que predisponen a un mayor riesgo de lesiones del nervio óptico, arteria Carótida interna y la contenido orbitario, así como el planeamiento de la cirugía funcional endoscópica (FEES).

- Entre las cinco variantes anatómicas tenemos: Agger nasi, Desviación septal, Alteraciones de la apófisis unciforme, Bulla etmoidal y alteraciones del cornete medio como la concha bullosa y el cornete paradójico.

- Finalmente, recomendamos continuar con la segunda etapa de esta investigación:

"Programa Cybertesis PERÚ - Derechos son del Autor"
“Determinar las variantes anatómicas de la nariz y de los senos paranasales en sujetos asintomáticos” de la población general.
BIBLIOGRAFÍA

Fernando Martín, Imagenología de la Nariz y senos paranasales
Chen Yue MD, Dales Robert MD, Lin Mei MD. The Epidemiology of Chronic Rhinosinusitis in Canadians. Laryngoscope, July 2003, Vol.113(7), P:1199-1205
wang, Peter H. MD, Irwin, Sande B. MD, Giest, Susan E MPH; Caro, James MD, Nesbit, Gary. MD: Radioriologic correlates of Symptom-based diagnostic criteria for

Bolger WE, Butzin CA, Parsons DS. Paranasal Sinus bony anatomic variations in the coronary CT analysis for endoscopic innus surgery. Laryngoscope 1991; 101:56-64

Bhattacharyya, Neil MD; Fried, Marvin P. MD. The Accuracy of Computed Tomography in the Diagnosis of Chronic Rhinosinusitis. Laryngoscope Vol.113(1),January 2003, pp 125-129

Uykur, Kemal MD; Tuz, Mustafa MD; Dogru, Harun MD. The correlation between septal deviation and concha bullosa. Otolaryngology – Head and Neck Surgery. 129(I):33-36, July 2003

Fernando Couto. Anatomía y variantes anatómicas de la nariz y senos paranasales IV Jornada de Otorrinolaringología y Cirugía Facial. 31 de Agosto 1 y 2 de setiembre del 2001. Lima – Perú.

Sinusitis crónica: variantes anatómicas determinadas mediante tomografía helicoidal “Hospital Nacional Arzobispo Loayza, 2003-2004”
ANEXOS

PANEL DE IMÁGENES
FICHA DE RECOLECCION DE DATOS
(CONSULTAR EN EL FORMATO IMPRESO)