Evaluación serológica de la diarrea viral en bovinos productores de leche de la microcuenca Ccañipía, Espinar, Cusco

TESIS
para optar el título de Médico Veterinario

AUTOR
César Alexis Cárdenas Aquino

Lima – Perú
2009
CONTENIDO

<table>
<thead>
<tr>
<th>Pág.</th>
<th>LISTA DE CUADROS</th>
<th>RESUMEN</th>
<th>SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>iv</td>
<td></td>
<td></td>
<td>v</td>
</tr>
</tbody>
</table>

I.	INTRODUCCIÓN	1
	REVISION BIBLIOGRÁFICA	3
	2.1. CARACTERÍSTICAS DEL VIRUS	3
	2.1.1. Morfología	3
	2.1.2. Proteínas virales	3
	2.1.3. Biotipos	4
	2.1.4. Genotipos	5
	2.1.5. Variabilidad	5
	2.2. EPIDEMIOLOGÍA	6
	2.2.1. Prevalencia	6
	2.2.2. Fuentes de infección	6
	2.2.3. Formas de transmisión	7
	2.2.3.1. Transmisión horizontal	8
	2.2.3.2. Transmisión vertical	8
	2.3. PATOGÉNESIS	9
	2.3.1. Inmunodepresión	10
	2.3.2. Complejo respiratorio	10
	2.3.3. Complejo diarrea neonatal bovina	10
	2.3.4. Infección subclínica	10
	2.3.5. Infección aguda	11
	2.3.6. Trastornos reproductivos	11
	2.3.7. Infección en hembras gestantes	12
	2.3.8. Infecciones persistentes	13
	2.3.9. Enfermedad de las mucosas	14
LISTA DE CUADROS

Cuadro 1. Prevalencia del virus de la diarrea viral (VDVB) en bovinos, mayores a 6 meses, provenientes de tres comunidades de la microcuenca Ccañipía, provincia de Espinar – departamento de Cusco. 2007 ... 27

Cuadro 2. Animales con anticuerpos contra el virus de la diarrea viral (VDVB) (n=228), según edad y grupo etario de la microcuenca Ccañipía, Espinar, Cusco. 2007 ... 27

Cuadro 3. Seroprevalencia del virus de la diarrea viral bovina según las comunidades y criadores de la microcuenca de Ccañipía, Espinar-Cusco. 2007 28

Cuadro 4. Distribución de títulos de anticuerpos neutralizantes contra el virus de la diarrea viral (VDVB) en muestras de suero de bovinos procedentes de la microcuenca Ccañipía, Espinar-Cusco. 2007 ... 28
RESUMEN

El presente estudio tuvo como objetivo determinar la seroprevalencia del virus de la diarrea viral bovina (VDVB), en bovinos mayores a 6 meses, provenientes de 114 pequeños productores de 3 diferentes comunidades de la microcuenca de Ccañipía, provincia de Espinar, Cusco, con esta finalidad se obtuvieron muestras de sangre de 406 animales para la detección de anticuerpos contra el VDVB mediante la prueba de neutralización viral. El 56.2% ± 4.8 (228/406) de los animales presentaron anticuerpos contra el VDVB. Animales seropositivos fueron detectados en todos los grupos etarios, sin embargo el 65.4% (149/228) de los animales seroreactores pertenecieron al grupo de vacas en producción y en seca (mayores a 24 meses de edad). El 51.3% (20/39) de los toros y toretes presentaron anticuerpos contra el VDVB. El 86.8% (99/114) de los propietarios tuvieron al menos un animal seropositivo a anticuerpos contra el VDVB. Los títulos de anticuerpos variaron entre 2 a >256. No se detectaron animales persistentemente infectados (PI). Los resultados indican que el VDVB tiene una amplia distribución en la población bovina de los hatos de la microcuenca de Ccañipía.

Palabras clave: Diarrea viral bovina (DVB), seroprevalencia, virus, anticuerpos, neutralización viral, antígeno, ELISA.
SUMMARY

The objective of the present study was to determine the seroprevalence of bovine viral diarrhea virus (BVDV) in bovines over 6 months old, originating of 114 small producers from 3 different communities of Ccañipia dairy microregion, Espinar province, Cusco, with this purpose were obtained blood samples of 406 animals for the detection of antibodies against BVDV by means of viral neutralization test. 56.2% ± 4.8 (228/406) of the animals showed antibodies against BVDV. The seropositive animals were detected in all age groups, however 65.4% (149/228) of seroreactive animals belonged to group of dairy, and dry cows (over 24 months old). 51.3% (20/39) of bulls and young bulls showed antibodies against BVDV. 86.8% (99/114) of owners had at least one seropositive animal to antibodies against BVDV. The antibody titles varied between 2 to >256. No persistently infected (PI) animals were detected. The results suggest that BVDV has a broad distribution in the bovine population of the herds of Ccañipia dairy microregion.

Keywords: Bovine Viral Diarrhea (BVD), seroprevalence, virus, antibodies, viral neutralization, antigen, ELISA.
I. INTRODUCCIÓN

La población bovina en el Perú es de 5’101,895 cabezas y más del 80% de este capital ganadero se encuentra en la sierra en manos de pequeños ganaderos y comunidades campesinas con predominio del ganado criollo y sus cruces criados en forma semi extensiva o extensiva con escasa tecnología con una producción de 700 a 2300 litros de leche por campaña (INIA, 2008; Portal Agrario, MINAG. 2008).

El desarrollo de la ganadería lechera muestra un gran potencial de desarrollo en la costa debido a la disponibilidad de subproductos agrícolas y agroindustriales, además un creciente interés en el desarrollo de la ganadería lechera de la sierra con recursos forrajeros como muchos valles interandinos (La Revista Agraria, 2002) y mesetas que cuentan con una gran extensión de pastos naturales y cultivados. La microcuenca de Ccañipía en la provincia de Espinar en el Cusco situada a una altura de 4000 msnm con un piso ecológico Puna, es uno de estos valles interandinos de creciente desarrollo.

Sin embargo, a pesar del potencial de desarrollo de la actividad ganadera en el país, se sabe que el incremento de la población ganadera y la intensificación de su manejo promueve la difusión de enfermedades sobre todo virales como la diarrea viral bovina (DVB) que ya se encuentra distribuido en la población bovina en diversos lugares del país ocasionando problemas reproductivos y respiratorios (Rivera et al., 1993; Rivera et al., 2000; Zanabria et al., 2000).
El Virus de la diarrea viral bovina (VDVB), es un agente asociado a condiciones clínicas y subclínicas relacionadas a una deficiente capacidad reproductiva y productiva (Rush, 2001). Es responsable de ocasionar un amplio rango de manifestaciones clínicas y lesiones, siendo los trastornos reproductivos los de mayor impacto económico (Lértora, 2003). Además las infecciones con cepas altamente virulentas del VDVB causan signos clínicos severos pudiendo producir la muerte del animal después de una infección aguda, dando como consecuencia importantes pérdidas económicas (Houe, 1999).

Diversos estudios serológicos realizados en bovinos productores de leche de las principales cuencas lecheras y en ganado criollos de valles internadinos como el Mantaro en Junín, Melgar en Puno y Parinacochas en Ayacucho, que entre otros han demostrado que el VDVB está ampliamente difundido en la población bovina, posiblemente por la falta de control en el movimiento interno de animales ya que la DVB no constituye una barrera sanitaria dentro del país (Contreras et al., 2000; Rivera et al., 2001, Quispe et al., en prensa). También existen lugares donde el ganado criollo está libre de la enfermedad (Rivera, 2007, comunicación personal).

En este contexto fue necesario realizar el presente estudio en la microcuenca de Ccañípía en la provincia de Espinar, departamento de Cusco, a 4000 msnm, que presenta condiciones para el desarrollo de la ganadería lechera. Ccañípía cuenta con una población de 1805 cabezas de bovino de raza Brown Swis y sus cruces, en manos de 127 a 180 pequeños criadores con un promedio de 6 a 20 animales por hato. Informaciones recogidas de los criadores indicaron la ocurrencia cada vez mayor de abortos y problemas respiratorios en los terneros (Alagón, 2007, comunicación personal).

Debido a que no existen informaciones sobre la situación de enfermedades causantes de problemas reproductivos como es la DVB en Ccañípía, el presente estudio tuvo como objetivo determinar la seroprevalencia del VDVB en bovinos de la microcuenca de Ccañípía, Espinar, Cusco.
II. REVISIÓN BIBLIOGRÁFICA

2.1. CARACTERÍSTICAS DEL VIRUS

El virus de la diarrea viral bovina (VDVB), es un miembro del género pestivirus de la familia Flaviviridae, agente causal de la enfermedad de la diarrea viral bovina (DVB), ha emergido como uno de los patógenos más importantes que afectan al bovino y otros rumiantes domésticos y silvestres en el mundo. La alta prevalencia viral y sus efectos negativos sobre la reproducción y en general sobre la salud del hato, resultan en una significante pérdida económica para la industria lechera mundial (Houe, 2003).

2.1.1. Morfología

Son virus envueltos, esféricos y miden de 40 a 60 nm de diámetro. Se componen de una cadena simple de ARN compactado por una cápside proteica, rodeada por una membrana fosfolipídica con tres glicoproteínas de origen viral ancladas a ella (Nettlenton y Entrican, 1995).

2.1.2. Proteínas virales

Las principales proteínas estructurales y no estructurales que constituyen la partícula viral son:

E0env(gp48); E1: Glicoproteínas asociadas a la envoltura viral. Además la proteína gp48 induce en parte la producción de anticuerpos neutralizantes (Paton, 1995), cumple una
función de una ARNasa y es secretada al espacio extracelular por exocitosis durante la replicación viral (Donis, 1995).

E2 (gp53): Glicoproteína de mayor importancia del virión y antígeno del serotipo, gracias a la presencia de epitopos es capaz de inducir la producción de anticuerpos neutralizantes luego de una infección o vacunación. Contiene una región hipervariable y altamente mutable, lugar donde ocurren mutaciones y cambios antigénicos dando lugar a la aparición de cepas variantes del VDVB (Donis, 1995; Paton, 1995).

C (p14): Proteína de la cápside, es la más abundante y encargada de empaquetar el ARN genómico y proporcionar las interacciones necesarias para la formación de la envoltura del virión.

Npro (p20): Proteína no estructural y responsable de la proteólisis de la poliproteína producto de la traducción del genoma.

NS23 (p125): Proteína no estructural indispensable para la multiplicación viral. Los animales infectados o vacunados con virus vivo modificado desarrollan una fuerte respuesta humoral contra esta proteína (Paton, 1995).

NS3 (p80): Fragmento más pequeño de la proteína NS23 (p125), debido a que surge a partir de la escisión de ésta, presente en todas las variantes citopatógenicas del VDVB y la síntesis de esta proteína parece estar ligada al desarrollo de la enfermedad de las mucosas (Meyers et al., 1991)

2.1.3. Biotipos

Según sus efectos en los cultivos celulares, los pestivirus se dividen en biotipos citopatógenos (CP) y no citopatógenos (NCP). Los virus CP ocasionan vacuolización y muerte celular, los virus NCP no ocasionan cambios visibles en el cultivo celular y la célula infectada parece normal. Esto no implica que los biotipos NCP sean no patógenos, por el contrario, es el biotipo predominante en la naturaleza, aislado de la mayoría de las formas clínicas y el único capaz de originar infección persistente (Deregt y Loewen, 1995).
El biotipo CP, se aísla mayormente de animales con enfermedad de las mucosas y se originan por mutación a partir del biotipo NCP, ya sea por depleción de fragmentos del genoma viral, inserción de fragmentos de ARN celular o duplicación y reordenamiento del ARN viral (Meyers et al., 1996).

2.1.4. Genotipos

La genotipificación, es el método aceptado para clasificar a los pestivirus. Bajo este sistema de clasificación el VDVB, se agrupa en 2 genotipos: Genotipo 1 y Genotipo 2 del virus de la diarrea viral bovina (Ridpath, 1996). El genotipo 1 del VDVB puede ser dividido en al menos 11 subgenotipos y es muy probable que nuevos subgenotipos sean revelados en futuros análisis (Vilcek et al., 2001).

2.1.5. Variabilidad

La principal característica de este virus es su variabilidad genética y antigénica (Caropi et al., 1990; Ridpath, 1996). La característica principal de un virus ARN es su plasticidad y ésta se debe a la falta de una exonucleasa eficiente para corregir las bases mal incorporadas. El VDVB usa esta estrategia para sobrevivir, originando cepas mutantes que escapan a la respuesta inmunológica del hospedador (Donis, 1995).

El cruce de especies crea otra oportunidad para la diversificación, ya sea por adaptación al nuevo hospedador o por evolución divergente. Sin embargo, el VDVB aislado de cerdos y ovejas tienen características biológicas y antigénicas similares a los aislados del bovino (Paton, 1995).

Bolin y Ridpath (1992), demostraron que nuevas variantes antigénicas se originan durante el pasaje del virus en bovinos susceptibles que desarrollan una infección aguda. Esto sugiere que, mientras los animales persistentemente infectados son más importantes como reservorios, los animales con infección aguda pueden ser más importantes para generación de nuevas variantes antigénicas (Paton et al., 1994).
2.2. EPIDEMIOLOGÍA

Estudios de prevalencia en todo el mundo demuestran que el VDVB está presente en la mayoría de países donde exista la crianza de ganado. Se muestran diferencias importantes, entre las distintas zonas, lo cual probablemente sea el resultado de las diferencias en cuanto a la densidad de la población y al manejo del ganado (Houe, 1995). La mayoría de los estudios en los diferentes países dan como resultados niveles de 0.5 a 2% de bovinos persistentemente infectados (PI) y 60 a 80% de bovinos seropositivos (Houe, 1999).

2.2.1. Prevalencia

Aunque la prevalencia de la infección varía entre zonas, la infección tiende a ser un mal endémico en muchas poblaciones, alcanzando un nivel máximo de 1-2% de los bovinos persistentemente infectados (PI) y 60-85% de los bovinos que presentan anticuerpos positivos (Houe, 1999). Se han reportado ganado con infecciones subclínicas constituyendo hasta un 90% en algunos rebaños infectados (Rush, 2001).

Estudios realizados en el Perú ponen en manifiesto la alta prevalencia del VDVB distribuido en bovinos y otras especies, causando manifestaciones clínicas asociadas a trastornos respiratorios y principalmente reproductivos (Rivera et al., 1993; Rivera et al., 2000). Estudios serológicos realizados en la cuenca lechera de Arequipa, indican que el VDVB tiene una prevalencia de entre 50 a 80% en bovinos (Rivera, 2001). En tanto que en el valle de Lima se encontró una prevalencia del 56% en bovinos de crianza intensiva (Aguilar et al., 2006). En el Valle del Mantaro se determinó una prevalencia de más del 70% de infección del VDVB (Contreras et al., 2000), mientras que en Ayacucho se determinó una prevalencia de 85% (Rivera et al., 2001) y en Puno una prevalencia de 47% (Quispe, 2006).

2.2.2. Fuentes de infección

El contacto directo con los animales PI es probablemente el método más importante de transmisión de la DVB, aunque estudios de campo han demostrado que algunas infecciones también pueden producirse en ausencia de animales PI, esto puede
deberse al contacto con animales infectados o al contacto con otras especies infectadas con el VDVB (Houe, 1995).

Los animales PI eliminan continuamente durante toda su vida grandes cantidades de virus en secreción nasal, saliva, orina, materia fecal, lágrimas, semen y leche. Los animales con infección aguda también son fuente de infección, aunque menos eficiente, ya que eliminan el virus en cantidades más bajas y por cortos períodos (Houe, 1995)

2.2.3. Formas de transmisión

La transmisión puede ser vertical u horizontal, por contacto directo o indirecto. La transmisión del VDVB después del parto puede ocurrir directamente por contacto físico entre animales susceptibles y animales portadores del virus, por exposiciones venéreas, y por exposiciones indirectas con secreciones o excreciones que contengan el virus (Rush, 2001).

La principal forma de introducir el virus a un rebaño susceptible es a través de la adquisición de bovinos PI o hembras que transportan fetos PI (Houe, 1995; Houe, 1999). Cuando un animal PI es introducido a un rebaño, la transmisión a animales susceptibles ocurre rápidamente a la mayoría de los animales del rebaño. Por el contrario, cuando la infección se inicia por un bovino con infección aguda o por alguna otra vía que inicie una infección aguda, la transmisión es de corta duración y solo incluye un pequeño porcentaje del rebaño antes que la transmisión cese (Houe, 1999; Tremblay, 1996).

Los factores que influyen en la eficiencia de transmisión del VDVB dentro de un rebaño no son conocidos, pero posiblemente se relacionen al manejo y al medio ambiente, que favorece o impide la transmisión, incluyendo la proporción de animales susceptibles con animales inmunocompetentes, la proporción de animales portadores del virus, la densidad del rebaño, y la virulencia o infectividad de las cepas del VDVB en el rebaño (Rush, 2001).
2.2.3.1. Transmisión horizontal

El contacto directo con animales PI, especialmente contacto nariz-nariz, es el modo más eficiente de transmisión en condiciones naturales, si un animal PI se introduce directamente en un hato lechero, la mayoría de los animales se infectarán dentro de unos meses. El contacto directo con animales que cursan una infección aguda también puede transmitir el virus (Houe, 1995; Houe, 1999).

El semen de toros PI o con infección aguda es una importante vía de transmisión horizontal. Por tal motivo en los centros de inseminación se debe recurrir al aislamiento viral y a un período de cuarentena que supere la fase aguda de la infección. Sin embargo, un toro con infección aguda puede escapar al aislamiento viral en sangre, superar el período de cuarentena y seguir siendo una amenaza. El virus puede eliminarse en semen por un corto período más allá del último día de viremia y se han detectado toros fuertemente seropositivos no virémicos que eliminan persistentemente el virus por semen (Fray et al., 2000).

Así mismo se ha demostrado de forma experimental la transmisión por vía aérea a corta distancia entre bovinos persistentemente infectados a bovinos centinelas. Aunque la transmisión aeróbena no es la principal ruta de transmisión, puede tener consecuencias graves cuando cepas de alta virulencia afectan a poblaciones susceptibles y con alta densidad animal (Mars et al., 1999).

La forma de transmisión indirecta fue demostrada experimentalmente, comprobándose la infección mediante el contacto con instrumental contaminado (agujas) (Houe, 1995), además con actividades como la palpación rectal y la acción de insectos hematofágos, minutos después de haber estado en contacto con animales PI (Tremblay, 1996).

2.2.3.2. Transmisión vertical

Se produce cuando hembras susceptibles infectadas durante la preñez transmiten el virus al feto (infección transplacentaria) con biotipos NCP del VDV antes de adquirir
competencia inmunológica (antes del día 125 de gestación, aproximadamente) desarrollando así una infección persistente (Moennig y Liess, 1995).

Aún cuando la tasa de mortalidad de los animales PI, es alta durante el primer año de vida, muchos alcanzan la madurez sexual reproducándose con total normalidad (Baker, 1987). Si las hembras gestantes son PI, siempre darán como resultado terneros PI. La transmisión vertical también ocurre luego de la transferencia embrionaria si el animal receptor es PI, o la vaca donante es PI y no se realiza el correcto lavado del embrión (Houe, 1995; Houe, 1999).

2.3. PATOGÉNESIS

Después del contacto con las membranas mucosas de la boca o nariz, la replicación ocurre en las células epiteliales con una predilección por las tonsilas palatinas (Jubb et al., 1993). El virus presenta tropismo por células mitóticamente activas como: linfocitos, fagocitos mononucleares y células epiteliales (Njaa et al., 2000).

La diseminación ocurre a través del virus libre en el suero o leucocitos infectados con el virus, particularmente linfocitos, monocitos, linfoblastos circulantes y células precursoras de macrófagos (Baker, 1995).

El VDVBD puede dar origen a diversas manifestaciones clínicas y lesiones como resultado de la interacción de factores tales como: cepa y biotipo viral, edad y estado inmune del hospedador, factores estresantes y otros patógenos concurrentes (Bielefeldt, 1995). Además manifestaciones clínicas que van desde infecciones subclínicas a una grave, una forma altamente mortífera denominada enfermedad de las mucosas (EM) (Baker, 1995). El grado de viremia inducida durante la infección por VDVBD se asocia con la gravedad de la enfermedad clínica. Los aislamientos del VDVBD que inducen un alto grado de viremia pueden ser capaz de inducir signos clínicos de la enfermedad (Walz et al., 2001).

Dentro de las principales características, producto de una infección con el VDVBD, se puede mencionar:
2.3.1. Inmunodepresión

El VDV produce leucopenia y altera las funciones de los leucocitos, incrementando la patogenicidad de microorganismos coinfectantes. Además posee una fuerte afinidad por el tejido linforeticular, ocasionando necrosis y atrofia de dichos tejidos (Baker, 1987).

En el tejido linfoide, el virus se localiza principalmente en las células del estroma, incluyendo macrófagos y células de soporte. Estas células elaboran citoquinas esenciales para el normal desarrollo y maduración de linfocitos, lo que sugiere que la necrosis linfoide es secundaria al trastorno del microambiente que proveen las células intersticiales y no a la acción directa del virus sobre los linfocitos (Brodersen y Kelling, 1998).

2.3.2. Complejo respiratorio

El VDV conlleva a una inmunodepresión sistémica y pulmonar, aumentando la patogenicidad de los demás agentes respiratorios (Brodersen y Kelling, 1998; Grooms, 1998). Además, se ha demostrado que ciertas cepas de la diarrea viral bovina actúan como agentes primarios de neumonías (Hamers et al., 2000).

2.3.3. Complejo diarrea neonatal bovina.

Cuando fracasa la transferencia pasiva de anticuerpos, el virus participa en el complejo diarrea neonatal de los terneros. Infecciones concurrentes con enteropatógenos resultan en manifestaciones clínicas más severas, debido al efecto inmunodepresivo del VDV o simplemente a una sumatoria de efectos (De Verdier, 2000).

2.3.4. Infección subclínica

La mayor parte de las infecciones son subclínicas o de carácter moderado, ocasionalmente se presenta fiebre, descarga oculonasal, leucopenia transitoria, elevada morbidad y baja mortalidad (Baker, 1987; Kelling, 1996). En este tipo de infecciones, se desarrollan anticuerpos neutralizantes 14 a 28 días postinfección y consecuentemente
la protección contra reinfecciones por cepas homólogas del virus probablemente de por vida (Fredriksen, 1999).

2.3.5. Infección aguda

La forma aguda se presenta en animales seronegativos, en especial animales entre 6 y 24 meses de edad, y es causada, en su mayoría, por virus no citopatogénico (Baker, 1995), además de ser de severidad variable, en bovinos seronegativos e inmunocompetentes (Kelling, 1996).

Los efectos perjudiciales de la infección por el VDVB incluyen la reducción de la producción de leche, la reducción de la función reproductiva, retraso del crecimiento, el aumento de incidencia de otras enfermedades, principio de sacrificio de los animales y el aumento de la mortalidad entre los animales jóvenes del rebaño (Houe, 2003). Cada vez son más frecuentes los informes de infección aguda severa de elevada morbilidad y mortalidad, asociada con virus de alta patogenicidad, caracterizada por fiebre elevada, signos respiratorios, diarrea, abortos, caída en la producción de leche y muerte súbita (Drake et al., 1996; Sockett et al., 1996).

La eliminación del virus en el semen de toros con infección aguda se extiende más allá del período de viremia, como consecuencia de la replicación local en vesículas seminales y próstata.

2.3.6. Trastornos reproductivos

El mayor impacto económico de la infección con el VDVB es el ocasionado por los trastornos reproductivos (Dubovi, 1994; Moennig y Liess, 1995). Las vacas seronegativas que reciben semen de toros PI seroconvierten 2 semanas después de la inseminación o monta. Los toros PI son generalmente infértiles, o producen semen de calidad reducida (Moennig y Liess, 1995).

Además la infección aguda, en las hembras, altera la función ovárica y reduce la fertilidad. El VDVB es agente causal de ooforitis intersticial no purulenta, con necrosis
de células de la granulosa y de oocitos (McGowan et al., 2003; Ssentongo et al., 1980) produciendo de esta manera una disfunción ovárica (Grooms, 1998).

Es posible detectar el antígeno viral en los macrófagos y células del estroma ovárico, entre los días 6 a 60 post infección (Grooms et al., 1998), y en células foliculares y oocitos en distintos estados de maduración (Fray et al., 1998). Las infecciones de hembras susceptibles próximas al momento del apareamiento ocasionan muerte embrionaria y repeticiones de servicio hasta que desarrollen respuesta inmune (Grahn et al., 1984; McGowan et al., 1993).

2.3.7. Infección en hembras gestantes

El VDVB en hembras gestantes susceptibles, produce infecciones subclínicas, sin embargo existe una alta probabilidad de una propagación transplacentaria del virus hacia el feto. Esto conlleva a que el feto, a tal infección, presente una variedad de respuestas, incluyendo el aborto o el nacimiento de terneros débiles y pequeños con o sin malformaciones congénitas, además de terneros clínicamente normales. El principal determinante del resultado de la infección de la DVB en vacas preñadas, es la edad del feto expuesto al desafío viral, además de ser importante el estado inmunológico de la madre (Murray, 1991).

El virus no tiene efecto sobre el crecimiento y desarrollo de los embriones hasta el día 8-9, momento en que pierden la zona pelúcida y se vuelven susceptibles. El resultado de la infección puede ser citolítico o no. Ambos terminan en muerte embrionaria, aunque la infección no citolítica también puede causar daño cromosómico, resultando en el desarrollo de malformaciones (Vanroose et al., 2000).

Si la infección se produce durante los días 45 y 125 de gestación, después de finalizada la etapa embrionaria y hasta que el feto adquiere competencia inmunológica al VDVB, es decir si la infección, con biotipos NCP, se produce antes que el feto adquiera competencia inmunológica, resulta en el nacimiento de animales persistentemente infectados e inmunotolerantes que eliminan permanentemente grandes cantidades del virus (Baker, 1995). Durante este período puede producirse también
muerte fetal con momificación o aborto meses después y un pequeño porcentaje de teratogénesis (Dubovi, 1994; Moennig, 1995).

Durante los días 125 a 175 de gestación, período que representa el comienzo de la inmunocompetencia fetal y del estado de organogénesis, la infección con el VDVB puede presentar altos porcentajes de alteraciones del desarrollo, además pueden presentarse abortos, pero éstos son más frecuentes en las etapas tempranas de gestación (Dubovi, 1994; Moennig y Liess, 1995).

Se pueden observar distintos tipos y grados de malformaciones tales como hipoplasia cerebelar, microencefalia, hipomielogénesis, hidranencefalia, hidrocefalia, atrofia o hipoplasia de timo, cataratas, microftalmia, degeneración de retina, hipoplasia y neuritis del nervio óptico, alopecías, hipotricosis, hipoplasia pulmonar, braquignatismo, artrogriposis, retraso general del crecimiento y deformidades esqueléticas (Dubovi, 1994; Moennig y Liess, 1995). Si la infección se da posterior a los 175 días de gestación, es decir en la etapa de crecimiento general y donde es inmunológicamente competente, las infecciones resultan en el nacimiento de terneros seropositivos normales o débiles, mientras que los abortos son ocasionales (Dubovi, 1994; Moennig y Liess, 1995).

2.3.8. Infecciones persistentes

La infección fetal con VDVB puede resultar en el nacimiento de terneros inmunotolerantes al VDVB con una infección persistente inaparente (Weinstock et al., 2001). Los animales PI resultan por la infección fetal con VDVB biotipo NCP durante el primer trimestre de gestación dado que el sistema inmune fetal no reconoce el VDVB como agente infeccioso o foráneo (Fray et al., 1998; Glew y Howard, 2001).

Un animal PI es aquél en el cual es posible aislar el virus de la sangre o tejidos en dos oportunidades con un intervalo de tiempo no menor a dos semanas. La viremia en estos animales es de por vida y no son capaces de producir anticuerpos contra la cepa que les originó inmunotolerancia. Los animales con infecciones persistentes por lo general se muestran pequeños al nacimiento, con escaso desarrollo y ganancia de peso, débiles y con cuadros recurrentes de enfermedad respiratoria y digestiva. Sin embargo,
otros son clínicamente normales, siendo indispensable el laboratorio para su diagnóstico (Kelling, 1996; Taylor et al., 1997).

2.3.9. Enfermedad de las mucosas (EM)

La EM se genera cuando animales PI con una cepa NCP son superinfectados con una cepa CP homóloga, de origen exógeno o generada de cambios genéticos o recombinación de ARN de las cepas NCP residentes (Baule et al., 2001), siendo posible el aislamiento de ambos biotipos antigénicamente similares. Es decir el biotipo CP surge de mutaciones del biotipo NCP, aunque no se descartan fuentes externas (Grooms, 1998). Esta enfermedad, esporádica y fatal, se caracteriza por presentar severa leucopenia, diarrea profusa, erosiones y ulceraciones en el sistema digestivo (Baker, 1987; Kelling, 1996).

2.4. RESPUESTA INMUNE

Una característica de importancia de la infección con VDVB es la aparente afinidad del virus por el sistema inmune (Lambot et al., 1998) y la inmunosupresión es una de sus principales atributos (Tizard, 2002).

El VDVB parece inducir respuestas mediadas por células T y B (Larsson y Fossum, 1992), existiendo una distinción entre respuestas humorales y mediadas por células, lo que sugiere la existencia de subpoblaciones de linfocitos T cooperadores Th1 y Th2 en la regulación de las respuestas inmunes específicas dirigidas contra el VDVB (Lambot et al., 1997). Esto puede deberse a la afección de la función de células presentadoras de antígeno, llevando a una reducción en la habilidad para estimular respuestas de las células T (Glew y Howard, 2001).

Ha sido demostrado, in vitro, que la infección de monocitos o macrófagos causa la síntesis de citocinas que pueden ser responsables de la reducida habilidad para estimular respuestas de células T a antígenos específicos y mitógenos, por lo tanto es posible que la inmunotolerancia al VDVB sea una consecuencia de la infección de las células presentadoras de antígeno (Glew y Howard, 2001).
Estudios acerca de la disminución linfocítica específica causada por VDVB, indican un papel importante de las células T CD4+ pero no de las células T CD8+. Se ha sugerido que las células T CD4+ juegan un papel importante decisivo en el establecimiento de la memoria inmune al VDVB (Lambot et al., 1997).

2.5. DIAGNOSTICO

Al igual que la mayoría de microorganismos. Los virus pueden ser detectados de forma directa o indirecta. Las pruebas directas, son las que evidencian al virus o algunos de los antígenos virales; mientras que las pruebas indirectas, son las que se utilizan con más frecuencia y básicamente demuestran un contacto del huésped con el agente viral mediante la determinación de anticuerpos específicos contra el virus. El objetivo principal del diagnóstico es la detección y remoción de bovinos PI, principal fuente de infección y reservorio del virus. Estas pruebas son las siguientes:

2.5.1. Aislamiento viral en cultivo celular

Los virus son microorganismos intracelulares y para evidenciarlos, se deben utilizar sistemas basados en líneas celulares que permitan su desarrollo. La invasión viral se evidencia a través de un cambio celular o efecto citopático y mediante pruebas complementarias (Janda et al., 1991).

El aislamiento viral es el método de referencia, es 100% específico y altamente sensible. Sin embargo, es un método costoso, laborioso y sin capacidad de diferenciar animales PI de animales con infecciones agudas (Dubovi, 1996).

2.5.2. Detección de antígenos virales

Dentro de las técnicas directas es posible incluir:

2.5.2.1. Inmunofluorescencia

Esta prueba se utiliza para detectar la presencia de antígenos virales en tejido fresco o frotis, mediante la utilización de anticuerpos contra VDVB marcados con un
fluorocromo (conjugado), los que con ayuda de un microscopio de fluorescencia, evidencian la presencia de antígenos virales (Werdi et al., 1989). Esta prueba tiene una sensibilidad de 77% y una especificidad de 83% (Lértora, 2003).

2.5.2.2. Inmunoperoxidasa

Prueba inmunohistoquímica, rápida, usada para la detección de antígeno de VDVB en muestras de tejidos frescos o fijados en formalina. En esta prueba se utiliza un anticuerpo monoclonal o policlonal marcado a una enzima que es la peroxidasa. Además esta prueba permite apreciar la arquitectura del tejido y con esto las lesiones histológicas que puedan estar presentes (Baszler et al., 1995). Esta prueba tiene una sensibilidad y especificidad de 97%. (Lértora, 2003).

2.5.2.3. ELISA de captura de antígenos

La prueba de ELISA de captura utiliza anticuerpos monoclonales para “capturar” antígenos del VDVB en muestras de sangre. Es un método rápido, y es considerado el método de preferencia para la detección a gran escala de animales PI (Dubovi, 1996).

Los anticuerpos monoclonales, usados en esta prueba, reconocen la proteína p125, por lo que pueden detectarse las diferentes cepas del VDVB. Estos anticuerpos están adheridos a la placa de ELISA para la captura del antígeno viral presente en las muestras de sangre o suero y un segundo anticuerpo monoclonal conjugado con peroxidasa revela la unión Antígeno-Anticuerpo. Para determinar el resultado es necesario observar la presencia de color, la cual indica la positividad de la muestra (Sandvik, 1995). Este método puede llegar a alcanzar una sensibilidad y especificidad de 97 y 99 respectivamente (Shannon et al., 1991).

2.5.3. Detección de anticuerpos

Se pueden detectar anticuerpos contra el VDVB en suero mediante pruebas estándar de neutralización de virus (VN) o mediante la prueba de ELISA (Edwards, 1990; Howard et al., 1985). Dichas pruebas son las más utilizadas en la detección de
anticuerpos contra el VDVB, cuya utilidad está basada en la detección de infecciones de DVB en hatos o poblaciones, ya que títulos altos de anticuerpos (VN), o densidades ópticas elevadas (ELISA), indican una infección activa dentro de un hato (Niskanen, 1993).

2.5.3.1. Neutralización viral (VN)

Es uno de los métodos serológicos más sensibles y específicos para la detección de anticuerpos contra el VDVB (Edwards, 1990). El fundamento de esta prueba radica en la capacidad de los anticuerpos para neutralizar la infectividad o citopatogenicidad del virus homólogo (Bishai, 1974; Rivera et al., 1993).

Esta prueba se lleva a cabo haciendo diluciones del suero y enfrentándolos a una cantidad constante de virus. Para esta prueba es necesario utilizar muestras de suero y/o fluido torácico fetal. Se utilizan micro placas de 96 hoyos y requiere de una cepa citopática (CP) del VDVB que debe ser conservada en el laboratorio debidamente titulada en cultivo celular secundario o línea celular continua libre de VDVB endógeno y la lectura se realiza tres o cuatro días posterior a su procesamiento (Benito et al., 2001).

2.5.3.2. Inmunoabsorvancia Ligada a Enzimas (ELISA)

La prueba de ELISA indirecta tiene un principio semejante al de la ELISA directa, sólo que en este caso, el antígeno contra la DVDB está unido a una fase sólida que puede ser un tubo, microplaca o perlas de vidrio, luego se añade el suero problema que posee los anticuerpos y después se adiciona el conjugado constituido por un anti-anti-cuerpo IgG y IgM unido a una enzima, posteriormente se adiciona el sustrato específico para la enzima., que lo va a modificar y produce un compuesto coloreado, cuya intensidad es proporcional a la concentración de anticuerpo presente en el suero (Ames, 1990; Conroy et al., 1991).
2.5.4. Detección del ácido nucleico viral

Un método rápido y sensible, es la reacción en cadena de la polimerasa (PCR), capaz de detectar diversos VDVB y permite investigar un gran número de muestras en corto tiempo (Ward y Misra, 1991). Gracias a su elevada sensibilidad es posible detectar el virus en pool de muestras de sangre y leche de tanque (Odeón et al., 2000; Renshaw et al., 2000), sin embargo por este motivo puede dar origen a resultados falsos positivos (Nettlenton y Entrican, 1995).

2.6. PREVENCIÓN Y CONTROL

Los estudios epidemiológicos son importantes como base para la selección de una estrategia de control. Debido a la variación en la epidemiología entre las diferentes zonas geográficas, la evaluación de una estrategia de control en una zona, de preferencia deben basarse en estudios epidemiológicos de la misma zona (Houe, 1995).

El control de la DVB dentro de un rebaño es posible, manteniendo un hato cerrado, se mejora sustancialmente la salud y productividad. Las estrategias de erradicación dependen de la seroprevalencia, uso de vacunas, densidad poblacional y prácticas de manejo (De Verdier, 2000)

En los pocos países que han introducido campañas de erradicación, los programas han demostrado ser rentables. Sin embargo, la selección de una estrategia de control siempre debe basarse en las investigaciones epidemiológicas a fondo realizado en las mismas condiciones en las que el programa va a ser aplicado (Houe, 2003).

La prevención de enfermedades neonatales depende fundamentalmente del manejo (inmunidad calostral). Es importante insistir en lograr una buena inmunidad calostral antes de recurrir a la vacunación para cubrir deficiencias en el manejo (Andresen, 2001).
2.6.1. Medidas de bioseguridad

El conocimiento del manejo y los factores medioambientales que afectan al ganado infectado con el VDV mejoraría la habilidad para controlar y prevenir la transmisión del virus, minimizando así los efectos adversos del VDV en la salud y la productividad del rebaño (Rush, 2001).

En regiones donde la seroprevalencia y la densidad poblacional es baja y no se emplean vacunas, la erradicación está basada en la identificación de rebaños con infección activa, detección y eliminación de animales PI y adecuadas medidas de bioseguridad manteniendo rebaños cerrados evitando así la infección de rebaños libres (Bitsch y Ronsholt, 1995)

Un requisito previo para la comprensión de la transmisión del VDV en los rebaños es la información acerca de la magnitud potencial de infección a los animales jóvenes de reemplazo durante las diferentes fases del manejo (Rush, 2001).
III. MATERIALES Y MÉTODOS

3.1. LUGAR DE ESTudio

El muestreo se realizó en la Microcuenca de Ccañipí, provincia de Espinar, en el departamento de Cusco, situada a una altura de 4000 m.s.n.m. y a 450 km. de la ciudad de Cusco, geográficamente ubicada en el piso ecológico Puna, y en el laboratorio de Virología de la Facultad de Medicina Veterinaria (FMV) de la Universidad Nacional Mayor de San Marcos (UNMSM), Lima.

3.2 MATERIALES

3.2.1. Animales

Se consideraron 406 animales, mayores a 6 meses, pertenecientes a 114 pequeños productores de las comunidades, los animales fueron agrupados por categorías o grupo etario: terneros (6-12 meses), vaquillas y vaquillonas (13-24 meses), vacas en producción y en seca (>24 meses), toros y toretes (>12 meses).

3.2.2. Equipos y materiales

Para el trabajo de laboratorio se emplearon los siguientes equipos/materiales:

- Centrífuga.
- Incubadora de 37º C.
- Refrigeradora
- Congeladora
- Tubos al vacío (sistema vacutainer).
- Agujas vacutainer.
- Pipetas Pasteur.
- Viales.
- Micropipetas simples y multicanales de 5 a 50 µL, 50 a 200 µL y 200 a 1000 µL.
- Microplacas estériles de 96 hoyos.
- Tips descartables.

3.2.3. Reactivos

Kit de ELISA de captura de procedencia comercial (Idexx, USA), para la detección de antígenos del VDVB en suero sanguíneo.

3.2.4. Cultivos celulares

Se utilizaron cultivos celulares de cornete nasal de feto bovino, libres de VDVB. Las células fueron cultivadas empleando medios de cultivo Eagle Esencial Médium (MEM) y Leibowitz (L-15) (SIGMA, USA), en una proporción de 50:50, suplementadas con el 10% de suero fetal bovino libre de VDVB y antibióticos (SIGMA, USA).

3.2.5. Cepa del VDVB

Se empleó la cepa NADL, prototipo del biotipo CP genotipo I, procedente de USA y con título de 10^{-5} DI$_50$ CC/50 µl.

3.3. MÉTODOS

3.3.1. Tamaño muestral

El método de selección del tamaño muestral, fue determinado mediante el método no paramétrico de muestreo simple al azar, considerando una prevalencia referencial de 46% (Quispe, 2006), con un nivel de confianza del 95% y 5% de error admisible (Daniel, 1996).
\[n = \frac{N z^2 p q}{e^2 (N-1) + z^2 pq} \]

Donde:

- \(n \): Tamaño de muestra mínimo
- \(N \): Tamaño de la población (1805)
- \(z \): Nivel de confianza (95%)
- \(p \): Prevalencia referencial (46%)
- \(q \): 1-\(p \)
- \(e \): Precisión (5%)

Aplicando la fórmula resultó un tamaño muestral mínimo de 315 animales, población que fue estratificada por categoría o grupo etario mediante la fórmula (Ahlbom y Norell, 1990):

\[nh = \frac{nk \cdot n}{N} \]

Donde:

- \(nh \): Tamaño de muestra del estrato
- \(nk \): Población del estrato

Resultado:

<table>
<thead>
<tr>
<th>Grupo etario</th>
<th>Edad meses</th>
<th>Población del estrato (Espinar-Cusco)</th>
<th>Número requerido de muestras (nh)</th>
<th>Número de muestras colectadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terneros</td>
<td>6 a 12</td>
<td>480</td>
<td>84</td>
<td>48</td>
</tr>
<tr>
<td>Vaquillas y Vaquillonas</td>
<td>13 a 24</td>
<td>247</td>
<td>43</td>
<td>85</td>
</tr>
<tr>
<td>Vacas en producción y en seca</td>
<td>> 24</td>
<td>904</td>
<td>157</td>
<td>234</td>
</tr>
<tr>
<td>Toretes y toros</td>
<td>> 12</td>
<td>174</td>
<td>31 (*)</td>
<td>39</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>1805</td>
<td>315</td>
<td>406</td>
</tr>
</tbody>
</table>

(*) Los toros y toretes fueron muestreados en un 100% por tratarse de reproductores
Haciendo un total requerido de 315 muestras. No obstante el número total de muestras obtenidas de la Microcuenca Ccañipía fue 406.

3.3.2. Obtención de las muestras

Las muestras fueron colectadas por punción directa de la vena yugular, utilizando el sistema vacutainers, de los animales mayores a 6 meses de cada hato seleccionado. Previo y durante la colección se registró la identificación del animal, sexo y categoría. Así mismo, en una hoja de encuesta diseñada previamente se colectó datos de abortos, infertilidad, problemas respiratorios y otros que el criador proporcionó.

Las muestras colectadas fueron transportadas al laboratorio de la provincia de Espinar para trasvasar los sueros a viales y posteriormente transportados al Laboratorio de Virología de la FMV, UNMSM y congelados a -20º C hasta su procesamiento.

3.3.3. Detección de Anticuerpos contra VDVB

La detección de los anticuerpos contra el VDVB se realizó mediante la prueba serológica de neutralización viral, utilizando placas descartables de 96 hoyos, según la técnica descrita por la OIE (2006), y el protocolo disponible en el laboratorio de Virología de la FMV de la UNMSM. A continuación se describe brevemente el procedimiento:

- Los sueros fueron inactivados a 56º C por un periodo de 30 minutos en Baño María.
- Se colocó 50 µl de diluyente (MEM + antibiótico) en una microplaca de 96 hoyos para cultivo celular.
- Se añadió 50 µl de suero en la hilera inferior (fila H) de la microplaca (12 sueros diferentes).
- Utilizando una micropipeta multicanal se realizó diluciones dobles, empezando por 1:2 hasta 1:256, eliminándose de esta última hilera 50 µl de la mezcla suero-diluyente.
- Se preparó el virus stock conteniendo las 100 DI$_{50}$ CC/50 µl.
- Se agregó al total de la microplaca 50 µl de la solución conteniendo el virus con las 100 DI₅₀CC.
- En otra placa se realizó los controles de 100, 10 y 1 dosis infectiva del virus.
- Se agitaron suavemente las diferentes microplacas y se incubaron en estufa a 37º C por una hora.
- Transcurrido este tiempo se añadió 100 µl de suspensión de células en una concentración de 3x10⁵ células de CNB por cada ml, a toda la microplaca, incluyendo los controles, y se procedió a incubar a 37º C y 5% de CO₂ por un periodo de 3 a 5 días.
- Cumplido este periodo de tiempo, se realizó la lectura, no sin antes verificar, la presencia en la monocapa de los cuatro hoyos de la columna 9 un 100% de efecto citopático (ECP), el 50% en la columna 10 y ningún ECP en las columnas 11 y 12.

Interpretación:

El título de anticuerpos del suero fue la dilución más alta capaz de neutralizar el 100% de DI₅₀CC/50 µl, del virus, evidenciándose por la ausencia del efecto citopático en las células indicadoras, y negativos cuando el suero no fue capaz de neutralizar el 100% de DI₅₀CC/50 µl, del virus, evidenciándose por la presencia del efecto citopático. Los títulos de suero iguales o mayores a la dilución 1:2 fueron considerados positivos a anticuerpos contra el VDVB.

3.3.4. Detección del antígeno viral mediante la prueba de ELISA de captura

Con el fin de identificar animales persistentemente infectados (PI), los sueros de los animales que resultaron negativos a anticuerpos contra el VDVB mediante la prueba de neutralización viral, fueron analizados en busca de antígeno del VDVB mediante la prueba de ELISA de captura según el protocolo disponible en el Kit proporcionado por la casa comercial (IDEXX, USA).
3.4. ANÁLISIS DE DATOS

La seroprevalencia fue determinada por la siguiente fórmula descrita por Thursfield (1990), y expresada en porcentaje, con intervalo de confianza (IC) de 95% según la siguiente fórmula:

\[
\text{PREVALENCIA} = \frac{\text{Número de muestras positivas} \times 100}{\text{Total de muestras}}
\]

Donde:

\[p: \text{Prevalencia} \]
\[Z: \text{Nivel de confianza (95%)} \]
\[q: 1-p \]
\[n: \text{Tamaño muestral} \]

Se utilizó la prueba de Chi cuadrado para determinar si existía asociación entre las variables sexo, edad, grupo etario, comunidad y la seropositividad de los animales usando un nivel de significancia del 0.05 para lo cual se ingresó los datos al programa SPSS 9.
IV. RESULTADOS

El 56.2% (228/406) de las muestras presentaron anticuerpos contra el VDVB (Cuadro 1). Los anticuerpos contra el VDVB, fueron detectados en animales de cada grupo etario, aunque el 65.4% (149/228) de los animales seroreactores pertenecieron al grupo de vacas en producción y en seca (Cuadro 2).

El 86.8% (99/114) de los criadores que permitieron el muestreo de sus animales tuvieron al menos un animal seropositivo en su rebaño (Cuadro 3).

Los títulos de anticuerpos contra el VDVB estuvieron dentro del rango de 2 a >256 (Cuadro 4).

No se detectaron animales persistentemente infectados dentro del grupo de animales que resultaron negativos a anticuerpos contra el VDVB.

Así mismo no se encontró asociación entre la variable sexo y la seropositividad de los animales mediante la prueba de Chi-cuadrado, sin embargo se encontró asociación entre las variables edad, grupo etario, comunidad y la seropositividad de los mismos (Apéndice 1, 2, 3 y 4).
Cuadro 1. Prevalencia del virus de la diarrea viral (VDVB) en bovinos, mayores a 6 meses, provenientes de tres comunidades de la microcuenca Ccañipía, provincia de Espinar – Departamento de Cusco. 2007

<table>
<thead>
<tr>
<th>Número de Comunidades</th>
<th>Número de criadores (hatos)</th>
<th>Número de muestras</th>
<th>Animales con anticuerpos contra el VDVB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>n</td>
</tr>
<tr>
<td>3</td>
<td>114</td>
<td>406</td>
<td>228</td>
</tr>
</tbody>
</table>

Cuadro 2. Animales con anticuerpos contra el virus de la diarrea viral (VDVB) (n=228), según edad y grupo etario de la microcuenca Ccañipía, Espinar, Cusco. 2007

<table>
<thead>
<tr>
<th>Grupo etario</th>
<th>Edad meses</th>
<th>Número de muestras</th>
<th>Animales con anticuerpos contra el VDVB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>n</td>
</tr>
<tr>
<td>Terneros</td>
<td>6 a 12</td>
<td>48</td>
<td>15</td>
</tr>
<tr>
<td>Vaquillas y vaquillonas</td>
<td>13 a 24</td>
<td>85</td>
<td>44</td>
</tr>
<tr>
<td>Vacas en producción y seca</td>
<td>> 24</td>
<td>234</td>
<td>149</td>
</tr>
<tr>
<td>Toros y toretes</td>
<td>> 12</td>
<td>39</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>406</td>
<td>228</td>
</tr>
</tbody>
</table>
Cuadro 3. Seroprevalencia del virus de la diarrea viral bovina según las comunidades y criadores de la microcuenca de Ccañipía, Espinar-Cusco. 2007

<table>
<thead>
<tr>
<th>Comunidad</th>
<th>Número de criadores</th>
<th>Criadores con animales seropositivos (*)</th>
<th>Prevalencia del VDVB (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huisa Ccollana</td>
<td>70</td>
<td>64</td>
<td>91.43</td>
</tr>
<tr>
<td>Anta Ccollana</td>
<td>20</td>
<td>17</td>
<td>85</td>
</tr>
<tr>
<td>Huarca</td>
<td>24</td>
<td>18</td>
<td>75</td>
</tr>
<tr>
<td>TOTAL</td>
<td>114</td>
<td>99</td>
<td>86.84</td>
</tr>
</tbody>
</table>

(*) Número de criadores que tuvieron al menos un animal positivo a anticuerpos contra el VDVB dentro de su hato.

Cuadro 4. Distribución de títulos de anticuerpos neutralizantes contra el virus de la diarrea viral (VDVB) en muestras de suero de bovinos procedentes de la microcuenca Ccañipía, Espinar-Cusco. 2007

<table>
<thead>
<tr>
<th>Grupo etario</th>
<th>Edad meses</th>
<th>Inversa de los títulos de anticuerpos contra el VDVB (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 - 8</td>
<td>16 - 64</td>
</tr>
<tr>
<td>Terneros</td>
<td>6 a 12</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Vaquillas y vaquillonas</td>
<td>13 a 24</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Vacas en producción y en seca</td>
<td>> 24</td>
<td>34</td>
<td>54</td>
</tr>
<tr>
<td>Toros y toretes</td>
<td>> 12</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>56 (24.6%)</td>
<td>76 (33.3%)</td>
</tr>
</tbody>
</table>
V. DISCUSIÓN

El 56.2% de los animales muestreados de la microcuenca de Ccañipía presentaron anticuerpos contra el VDVB (Cuadro 1). Los anticuerpos detectados fueron inducidos por el VDVB de campo ya que los criadores no utilizan la vacuna como un medio para prevenir la enfermedad. No se dispone de información acerca de cuando el virus ingresó a la microcuenca de Ccañipía pero se asume que ingresó con animales mejorados pues el 90% del ganado presente en el área es de raza Brown Swis y cruce de criollos con Brown Swis. Existen similares informaciones del ingreso de agentes infecciosos causantes de enfermedades como la brucelosis, artritis, encefalitis caprina, entre otras a zonas libres con la introducción de animales infectados o portadores sin un previo análisis de laboratorio (Cárdenas y Rivera, 2001) pero también podría deberse a las ferias comunales en donde se venden y compran animales con fines de recría o la misma intensificación de la actividad de producción lechera.

La presencia de animales seroreactores en todos los grupos etarios indica la amplia difusión del virus dentro de los animales de las tres comunidades y sobre todo indica actividad viral (Cuadro 2). Si bien es cierto que los resultados muestran una asociación entre la comunidad y la seropositividad de los animales, esto se puede deber a alguna diferencia en cuanto al manejo o a la variedad en población y por consiguiente al número heterogéneo de muestras de cada una de las comunidades.

La actividad viral también sugiere reciente ingreso del virus a una población susceptible ya que en hatos pequeños como los de Ccañipía, la infección por el VDVB tiende a ser autolimitante pues al infectarse todos los animales quedan inmunizados naturalmente y por periodo largo, el animal por tanto está protegido contra nuevas
infecciones por el mismo virus (Fredriksen et al., 1999; Sandvik, 2004; Brock, 2004). Los efectos de la distribución del virus en los diferentes grupos o estratos podrían ser los abortos, nacimientos de terneros débiles y mortalidad de terneros por problemas neumónicos ya que el VDVB es un agente inmunosupresor y condicionante a infecciones con otros agentes infecciosos como la Mannheimia haemolítica u otros agentes virales como el virus de la rinotraqueítis infecciosa bovina (IBR) (Campbell, 2004).

Los resultados evidencian, además, una asociación entre la edad y la seropositividad de los animales. Si bien el número de muestras no es similar en todos los grupos etarios, se mostró el 52% de seroreactores en vaquillas y vaquillonas, así como en toros y toretes una prevalencia del 51%. Esto tiene una gran significancia epidemiológica porque podría estar germinándose animales portadores del virus o persistentemente infectados (PI) y en caso de los toros y toretes si la infección es aguda podrían eliminar al VDVB a través del semen y difundir aún más la infección en los animales del hato. El 63.7% (149/234) de las vacas en producción y en seca, resultaron positivos a anticuerpos contra el VDVB, lo cual podría deberse a infecciones pasadas y por tanto estar protegidas de reinfecciones, sin embargo también existe el riesgo de estar gestando fetos PI.

De los 114 criadores cuyos animales fueron muestreados, el 86.8% (99/114) tuvieron al menos un animal seropositivo (Cuadro 3). La alta difusión del virus en los animales de las tres comunidades sugiere prácticas comunes de manejo como cercanías durante el pastoreo, uso común del agua, compra y venta de animales entre los criadores de las tres comunidades. En un estudio similar efectuado en la irrigación de Majes, Arequipa el 47.2% de los animales de 57 hatos tuvieron anticuerpos contra el VDVB (Huamán et al., 2007). Las altas prevalencias del VDVB en un hato o una zona ganadera, indica la existencia de una fuente de infección que generalmente son los animales PI (Lindberg y Alenius, 1999) pero también la cercanía entre hatos, zonas de pastoreo y ausencia de medidas de bioseguridad.

No se detectaron animales PI en la población muestreada de Ccañipía, sin embargo no se descarta su existencia ya que la población de bovinos muestreados fue mayor a 6 meses de edad. A una altitud sobre 4000 msnm, los terneros PI,
posiblemente, no sobreviven mucho tiempo, tal vez son los que mueren en la etapa neo o perinatal, sin que el criador advierta que fue un ternero PI. En las cuencas lecheras como Cajamarca, Lima y Arequipa donde el sistema de crianza es mayormente intensivo o semi intensivo, los animales PI son detectados en el grupo de animales en riesgo es decir, desde que nace hasta antes del primer parto lo cual facilita su detección (Chacón et al., 2003; Huamán et al., 2007)

La distribución de los títulos de anticuerpos contra el VDVB en los animales muestreados indica la actividad o continuo desafío del VDVB sugiriendo el resiente ingreso de la infección a los animales de la microcuenca o la existencia de animales PI (Cuadro 4). La prevalencia de los animales PI es de 0.5 a 2% a nivel mundial, son la fuente del virus y los más eficientes transmisores de la infección en condiciones naturales ya que en 2 a 4 meses de vida puede infectar a más del 70% de los animales del hato (Houe, 1995; Houe, 1999). La no detección de estos animales, durante el estudio en los hatos de la microcuenca Ccañipía, no significa que no existan, posiblemente no fueron incluidos en el muestreo o no estuvieron presentes en el momento del muestreo.

Actualmente el control de la DVB se basa en la identificación y eliminación de los animales PI y adopción de buenas medidas de bioseguridad y más aún en hatos pequeños, como los que existen en Ccañipía, donde la infección es autolimitante. Por último, los problemas reproductivos y respiratorios frecuentes en la ganadería de la sierra son de origen multifactorial donde la DVB es uno de las enfermedades pero también están los otros virus respiratorios, así como la infección por Neospora caninum que también es considerada uno de los agentes productores de abortos en bovinos.

Para lograr que el criador o ganadero aplique las medidas de bioseguridad es necesario un conocimiento previo de estas medidas y su posterior entendimiento. Para cumplir estas metas, es necesario la intervención y compromiso por parte de instituciones como las universidades como parte de su rol de proyección social.
VI. CONCLUSIONES

- Se detectaron anticuerpos contra el VDVB en bovinos productores de leche procedentes de la microcuenca Ccañipía, Espinar-Cusco, en una prevalencia de 56.2%.
- Los anticuerpos contra el VDVB fueron detectados en todos los grupos etarios.
- El grupo etario que presentó mayor prevalencia fue el de vacas en producción y en seca.
- No se detectó animales persistentemente infectados con el VDVB.
VII. BIBLIOGRAFÍA CITADA

33. Glew E, Howard C. 2001. Antigen-presenting cells from calves persistently infected with bovine viral diarrhoea virus, a member of the flaviviridae, are not compromised in their ability to present viral antigen. J Gen Virol. 82: 1677-1685.

VIII. APÉNDICE

Apéndice 1. Prueba de Chi-cuadrado entre la variable “sexo” y la seropositividad de los animales.

Tabla de contingencia

<table>
<thead>
<tr>
<th></th>
<th>ResVDVB</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negativo</td>
<td>Positivo</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Sexo</td>
<td>Recuento</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hembra</td>
<td>145</td>
<td>200</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>% de Sexo</td>
<td>42,0%</td>
<td>58,0%</td>
<td>100,0%</td>
<td></td>
</tr>
<tr>
<td>Macho</td>
<td>33</td>
<td>28</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>% de Sexo</td>
<td>54,1%</td>
<td>45,9%</td>
<td>100,0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>178</td>
<td>228</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>% de Sexo</td>
<td>43,8%</td>
<td>56,2%</td>
<td>100,0%</td>
<td></td>
</tr>
</tbody>
</table>

Pruebas de chi-cuadrado

<table>
<thead>
<tr>
<th>Prueba de chi-cuadrado</th>
<th>Valor</th>
<th>gl</th>
<th>Sig. asintótica (bilateral)</th>
<th>Sig. exacta (bilateral)</th>
<th>Sig. exacta (unilateral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado de Pearson</td>
<td>3,067b</td>
<td>1</td>
<td>.080 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrección por continuidad</td>
<td>2,596</td>
<td>1</td>
<td>.107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Razón de verosimilitudes</td>
<td>3,043</td>
<td>1</td>
<td>.081</td>
<td></td>
<td>.093</td>
</tr>
<tr>
<td>Estadístico exacto de Fisher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.054</td>
</tr>
<tr>
<td>Asociación lineal por lineal</td>
<td>3,059</td>
<td>1</td>
<td>.080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>406</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Calculado sólo para una tabla de 2x2.
b. 0 casillas (.0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 26,74.

Apéndice 2. Prueba de Chi-cuadrado entre la variable “edad” y la seropositividad de los animales.

Tabla de contingencia

<table>
<thead>
<tr>
<th></th>
<th>ResVDVB</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negativo</td>
<td>Positivo</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Edadcat</td>
<td>Recuento</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 a 12 m</td>
<td>56</td>
<td>29</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>% de Edadcat</td>
<td>65,9%</td>
<td>34,1%</td>
<td>100,0%</td>
<td></td>
</tr>
<tr>
<td>13 a 24 m</td>
<td>41</td>
<td>52</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>% de Edadcat</td>
<td>44,1%</td>
<td>55,9%</td>
<td>100,0%</td>
<td></td>
</tr>
<tr>
<td>>24 m</td>
<td>81</td>
<td>147</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>% de Edadcat</td>
<td>35,5%</td>
<td>64,5%</td>
<td>100,0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>178</td>
<td>228</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>% de Edadcat</td>
<td>43,8%</td>
<td>56,2%</td>
<td>100,0%</td>
<td></td>
</tr>
</tbody>
</table>
Pruebas de chi-cuadrado

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>gl</th>
<th>Sig. asintótica (bilateral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado de Pearson</td>
<td>23,177(^a)</td>
<td>2</td>
<td>,000</td>
</tr>
<tr>
<td>Razón de verosimilitudes</td>
<td>23,239</td>
<td>2</td>
<td>,000</td>
</tr>
<tr>
<td>Asociación lineal por lineal</td>
<td>21,920</td>
<td>1</td>
<td>,000</td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>406</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) 0 casillas (,0\%) tienen una frecuencia esperada inferior a 5.
La frecuencia mínima esperada es 37,27.

Apéndice 3. Prueba de Chi-cuadrado entre la variable “grupo etario” y la seropositividad de los animales.

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Recuento Negativo</th>
<th>% de Clasificación</th>
<th>Recuento Positivo</th>
<th>% de Clasificación</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temera</td>
<td>33</td>
<td>68,8%</td>
<td>15</td>
<td>31,3%</td>
<td>48</td>
</tr>
<tr>
<td>Vaq. y Vaquillo</td>
<td>41</td>
<td>48,2%</td>
<td>44</td>
<td>51,8%</td>
<td>85</td>
</tr>
<tr>
<td>Vaca prod. y seca</td>
<td>85</td>
<td>36,3%</td>
<td>149</td>
<td>63,7%</td>
<td>234</td>
</tr>
<tr>
<td>Toros y torretes</td>
<td>19</td>
<td>48,7%</td>
<td>20</td>
<td>51,3%</td>
<td>39</td>
</tr>
<tr>
<td>Total</td>
<td>178</td>
<td>43,8%</td>
<td>228</td>
<td>56,2%</td>
<td>406</td>
</tr>
</tbody>
</table>

Pruebas de chi-cuadrado

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>gl</th>
<th>Sig. asintótica (bilateral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado de Pearson</td>
<td>18,509(^a)</td>
<td>3</td>
<td>,000</td>
</tr>
<tr>
<td>Razón de verosimilitudes</td>
<td>18,605</td>
<td>3</td>
<td>,000</td>
</tr>
<tr>
<td>Asociación lineal por lineal</td>
<td>10,082</td>
<td>1</td>
<td>,001</td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>406</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) 0 casillas (,0\%) tienen una frecuencia esperada inferior a 5.
La frecuencia mínima esperada es 17,10.
Apéndice 4. Prueba de Chi-cuadrado entre la variable “comunidad” y la seropositividad de los animales.

Tabla de contingencia

<table>
<thead>
<tr>
<th>Comunidad</th>
<th>HCc</th>
<th>ACc</th>
<th>Huarca</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recuento</td>
<td></td>
<td></td>
<td></td>
<td>Recuento</td>
</tr>
<tr>
<td>% de Comunidad</td>
<td></td>
<td></td>
<td></td>
<td>% de Comunidad</td>
</tr>
<tr>
<td>Negativo</td>
<td>100</td>
<td>25</td>
<td>53</td>
<td>178</td>
</tr>
<tr>
<td>Positivo</td>
<td>173</td>
<td>30</td>
<td>25</td>
<td>228</td>
</tr>
<tr>
<td>Total</td>
<td>273</td>
<td>55</td>
<td>78</td>
<td>406</td>
</tr>
</tbody>
</table>

Pruebas de chi-cuadrado

<table>
<thead>
<tr>
<th>Valor</th>
<th>gl</th>
<th>Sig. asintótica (bilateral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado de Pearson</td>
<td>2</td>
<td>0,00</td>
</tr>
<tr>
<td>Razón de verosimilitudes</td>
<td>2</td>
<td>0,00</td>
</tr>
<tr>
<td>Asociación lineal por lineal</td>
<td>1</td>
<td>0,00</td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>406</td>
<td></td>
</tr>
</tbody>
</table>

*a. 0 casillas (0%) tienen una frecuencia esperada inferior a 5. La frecuencia mínima esperada es 24,11.

Apéndice 5. Prueba de Regresión logística entre las variables “comunidad” y “edad”

Codificaciones de variables categóricas

<table>
<thead>
<tr>
<th>Comunidad</th>
<th>HCc</th>
<th>ACc</th>
<th>Huarca</th>
<th>Edadcat</th>
<th>Edadcat(1)</th>
<th>Edadcat(2)</th>
<th>Comunidad</th>
<th>Comunidad(1)</th>
<th>Comunidad(2)</th>
<th>Constante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia</td>
<td>273</td>
<td>55</td>
<td>78</td>
<td>85</td>
<td>1,000</td>
<td>0,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Variables en la ecuación

<table>
<thead>
<tr>
<th>Paso</th>
<th>Edadcat</th>
<th>B</th>
<th>E.T.</th>
<th>Wald</th>
<th>gl</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>I.C. 95.0% para EXP(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Edadcat(1)</td>
<td>.946</td>
<td>.319</td>
<td>23,289</td>
<td>2</td>
<td>.000</td>
<td>2,576</td>
<td>1,379-4,811</td>
</tr>
<tr>
<td></td>
<td>Edadcat(2)</td>
<td>1,333</td>
<td>.276</td>
<td>23,284</td>
<td>1</td>
<td>.000</td>
<td>3,792</td>
<td>2,207-6,517</td>
</tr>
<tr>
<td></td>
<td>Comunidad</td>
<td>23,956</td>
<td>2</td>
<td>.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comunidad(1)</td>
<td>1,378</td>
<td>.282</td>
<td>23,957</td>
<td>1</td>
<td>.000</td>
<td>3,968</td>
<td>2,285-6,890</td>
</tr>
<tr>
<td></td>
<td>Comunidad(2)</td>
<td>1,059</td>
<td>.376</td>
<td>7,914</td>
<td>1</td>
<td>.005</td>
<td>2,883</td>
<td>1,379-6,030</td>
</tr>
<tr>
<td></td>
<td>Constante</td>
<td>-1,781</td>
<td>.340</td>
<td>27,458</td>
<td>1</td>
<td>.000</td>
<td>.169</td>
<td></td>
</tr>
</tbody>
</table>

*a. Variable(s) introducida(s) en el paso 1: Edadcat, Comunidad.