Utilización de quinua (Chenopodium quinoa) y harina de cebada (Hordeum vulgare) en la elaboración de cabanossi con carne de ovino (Ovis orientalis aries)

TESIS
Para optar el Título Profesional de Médico Veterinario

AUTOR
Mónica Paola Rebatta Trujillo

Lima – Perú
2014
Agradecimientos:

A mi asesora de tesis Dra. Daphne por su apoyo y comprensión incondicional,

A la Dra. Bettit por sus consejos y apoyo,

Al Dr. Nestor por su apoyo

A mis amigos Magaly y Javier.
Dedicatoria

A Dios, a mi papá Lucho, a mi mamá Bertha y a Edgardo.
ÍNDICE GENERAL

Agradecimiento ... i
Dedicatoria .. ii
CONTENIDO ... iii
RESUMEN .. iv
ABSTRACT ... v
INDICE DE TABLAS ... vi
INDICE DE FIGURAS .. vii
LISTA DE APÉNDICES ... viii
LISTA DE ABREVIATURAS UTILIZADAS .. ix

I. INTRODUCCIÓN .. 1

II. REVISIÓN BIBLIOGRAFICA ... 3

2.1 EL OVINO .. 3

2.1.1 Clasificación taxonómica del ovino ... 4
2.1.2 Beneficio del ovino ... 6
2.1.3 Características principales de la carne de ovino ... 7
2.1.4 Rendimiento de los cortes de carne ... 8
2.1.5 Calidad de canal ... 8
2.1.6 Composición química y valor nutritivo de la carne de ovino ... 10

2.2 LA QUINUA ... 11

2.2.1 Clasificación botánica ... 11
2.2.2 Variedades Nacionales y características de su Cultivo .. 12
2.2.3 Partes del grano de quinua .. 13
2.2.4 Valor nutricional de la quinua ... 14

2.2.5 Composición química de la quinua .. 15

2.2.6 Consumo de la quinua ... 18
 2.2.6.1 Producción y consumo de la quinua 18
 2.2.6.2 Aprovechamiento industrial del grano de quinua 18

2.3 HARINA DE CEBADA .. 20

2.4.1 Clasificación botánica .. 20

2.4.2 Variedades Nacionales y características de su Cultivo 20

2.4.3 Partes de la planta de la cebada ... 20

2.4.4 Valor nutricional de la cebada .. 21

2.4.5 Composición química de la cebada ... 21

2.4.6 Consumo de la cebada ... 21
 2.4.6.1 Producción y consumo de la quinua 21
 2.4.6.2 Aprovechamiento industrial del grano de quinua 22

2.4 EMPLEO DE AGREGADOS EN PRODUCTOS CÁRNICOS 22

2.5 EMBUTIDOS .. 23
 2.5.1 Clasificación de embutidos según el tratamiento térmico 24
 2.5.1.1 Sin tratamiento Térmico ... 24
 2.5.1.2 Con tratamiento térmico .. 24
2.6 CABANOSI.. 24
 2.6.1 Definición... 24
 2.6.2 Valor nutritivo del Cabanossi............................. 25
 2.6.3 Formulaciones para Cabanossi............................ 25
 2.6.4 Procesos de elaboración.................................... 26
 2.6.4.1 Curado.. 28
 2.6.4.1.1 Métodos del curado.......................... 29
 2.6.4.1.2 Procesos físicos y químicos del curado...... 35
 2.6.4.1.3 Riesgos sanitarios del curado................ 36
 2.6.5 Principales etapas en los procesos de elaboración de Cabanossi 37
 2.6.5.1 Maduración... 37
 2.6.5.2 Ahumado – cocción 39
 2.6.5.2.1 Métodos de ahumado.......................... 40
 2.6.5.2.2 Riesgos del ahumado........................... 44
 2.6.6 Característica sensorial 44
 2.6.7 Composición Química....................................... 48

III MATERIALES Y MÉTODOS.. 51
 3.1 Lugar de realización .. 51
 3.2 Materia prima e insumos 51
 3.2.1 Materia prima .. 51
 3.2.2 Insumos.. 52
 3.3 Materiales y equipos ... 52
 3.3.1 Materiales ... 32
 3.3.2 Equipos.. 32
3.4 Métodos de análisis y evaluación .. 53
 3.4.1 Análisis proximal .. 53
 3.4.2 Análisis de textura ... 53
 3.4.3 Análisis del color .. 53
 3.4.4 Análisis del pH .. 53
 3.4.5 Análisis de la actividad de agua ... 53
 3.4.6 Análisis sensorial .. 54
3.5 Metodología experimental ... 54
 3.5.1 Diseño de estudio .. 54
 3.5.2 Formulaciones preliminares ... 55
 3.5.3 Flujo de operaciones .. 57
3.6 Análisis de resultados .. 59

IV. RESULTADOS .. 60
 4.1 Análisis de los cabanossi preliminares con carne de ovino, quinua y harina de cebada ... 60
 4.2 Formulación preliminar ajustada a cabanossi comercial.................. 62
 4.3 Evaluación de aceptación del cabanossi a base de carne de ovino, quinua y harina de cebada ... 63
 4.4 Análisis Proximal .. 64
V. DISCUSIÓN .. 65

VI CONCLUSIONES .. 71
VII. RECOMENDACIONES ... 72

VIII. LITERATURA CITADA .. 73

IX ANEXOS ... 87
RESUMEN

Actualmente el Perú cuenta con el 1% de la población de ovinos en el mundo que equivalen a 9341 721 (INEI, 2012). La carne de ovino por lo general es usada para autoconsumo, siendo uno de sus principales problemas, la poca aceptación cuando proviene de animales viejos, debido al fuerte y desagradable olor, producto de la acumulación del ácido 4-etiloctanoico en la carne (Sutherland y Ames, 1996). La utilidad de la aplicación de tecnologías novedosas con la finalidad de enmascarar este fuerte olor y diversificar la comercialización de la carne, se incrementa cuando se utilizan insumos que se producen en la misma región como la quinua (Chenopodium quinoa), que tiene gran valor nutritivo y la harina de cebada (Hordeum vulgare). Por lo anteriormente indicado, el objetivo principal de este trabajo fue desarrollar un cabanossi de carne de ovino con inclusión de quinua y harina de cebada, mediante el método de diseño de mezclas, determinando la zona factible de formulación en base a la restricción de calorías y proteínas. A las formulaciones obtenidas se les realizó análisis tales como color, textura y actividad de agua. Posteriormente, mediante el software Design-Expert® 8 se determinó la formulación de cabanossi con características tecnológicas similares al producto que existe en el mercado, obteniendo la siguiente formulación óptima: 75.84% de carne de ovino, 20.16% de quinua y 4% de harina de cebada, la cual fue evaluada sensorialmente por 50 consumidores, utilizando una escala hedónica de 9 puntos, obteniéndose los siguientes resultados: gustó ligeramente: 8%, gusto moderadamente: 42%, gusto mucho: 28% y gusto muchísimo: 22%. La composición proximal del producto desarrollado fue: 56.19 % de humedad, 34.00% de grasa, 33.73% de proteína, 9.58% de cenizas y 2.29% de fibra cruda; asimismo se determinó un costo de S/. 12.5/kg de cabanossi. Finalmente, se obtuvo un cabanossi de carne de ovino con inclusión de quinua y harina de cebada, aceptado sensorialmente, manteniéndose los niveles de proteína dentro de estándares comerciales con una factibilidad en costos de elaboración.
ABSTRACT

Peru currently has 1% of the population of ovine in the world that is equivalent to 9,341,721 (INEI, 2012). The sheepmeat usually is used for own consumption, one of the main problems, the low acceptance when it comes from older animals, due to the strong and unpleasant odor, due to the accumulation of 4-ethyloctanoic in meat (Sutherland and Ames, 1996). The utility of the application of new technologies with the purpose to mask the strong odor and diversify the marketing of meat is increased when inputs that are produced in the same region are used like the quinoa (Chenopodium quinoa), which has a great nutritional value and flour of barley (Hordeum vulgare). As indicated above, the main objective of this work was to develop a cabanossi of sheepmeat including quinoa and barley flour, using the method of mixture design, determining the feasible zone of formulation on the basis of the restriction of calories and proteins. Of the formulations obtained were subjected to analysis such as color, texture and water activity. Subsequently, using the software Design-Expert® 8 the formulation of cabanossi was determined with similar technological characteristics to the product that exist on the market, obtaining the following optimal formulation: 75.84% of sheepmeat, 20.16% of quinoa and 4% flour barley, which was sensorially evaluated by 50 consumers, using a hedonic 9-point scale, with the following results: I like slightly: 8%, I like moderately: 42%, I like very much: 28% and I like extremely: 22%. The proximate composition of the product developed was: 34.00% fat, 56.19% moisture, 33.73% protein, 9.58% ash and 2.29% crude fiber also was determined the cost of S/. 12.5/kg of cabanossi. Finally, was obtained a cabanossi of sheepmeat including quinoa and barley flour, sensorially accepted, maintaining the levels of protein within commercial standards with feasibility in costs of production.

Keywords: Quinoa, barley flour, sheep.
<table>
<thead>
<tr>
<th>Cuadro</th>
<th>Título</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Población de ganado ovino, según censos agropecuario</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Producción de carne y precios al productor por año de ovinos en el Perú. 2001-2011. Datos preliminares</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Rendimiento en cortes de carne de cordero extra</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Principales características de la canal que influyen en su valor comercial</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Aminoácidos esenciales en la quinua, comparado con otros cereales (g/10kg bruto)</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Composición de los carbohidratos de tres variedades de quinua (% de materia prima)</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Principales formulaciones para Cabanossi</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>Parámetros del proceso para la elaboración de Cabanossi</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Formulación base a utilizar en la elaboración de Cabanossi</td>
<td>58</td>
</tr>
<tr>
<td>10</td>
<td>Análisis físico-químico en cabanossi de carne de ovino, quinua y harina de cebada</td>
<td>62</td>
</tr>
<tr>
<td>11</td>
<td>Resultados de análisis físico-químico de la formulación preliminar ajustada</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>Análisis de datos del análisis sensorial</td>
<td>63</td>
</tr>
<tr>
<td>13</td>
<td>Resultados del análisis proximal del Cabanossi de ovino (% base seca)</td>
<td>64</td>
</tr>
<tr>
<td>Figura</td>
<td>Título</td>
<td>Pág.</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Despiece de la canal de oveja (Cañeque, 2005)</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Estructura interna del grano de quinua (Tapia et al., 1979)</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Fracciones de proteína en cuatro variedades de quinua</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Diagrama del proceso de elaboración de Cabanossi</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>Efecto de los nitratos y/o nitritos en el color de la carne curada</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>Diseño de estudio</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>Parámetros para Diseño de las Formulaciones a Evaluar</td>
<td>56</td>
</tr>
<tr>
<td>8</td>
<td>Formulaciones a evaluar</td>
<td>56</td>
</tr>
<tr>
<td>9</td>
<td>Flujo de operaciones para la elaboración de Cabanossi de Ovino</td>
<td>57</td>
</tr>
</tbody>
</table>
ÍNDICE DE ANEXOS

ANEXO 1: Categorías carniceras de los ovinos ... 88
ANEXO 2: Porcentajes de los cortes de carne con respecto al peso
de las canales de tres especies de abasto ... 89
ANEXO 3: Composición proximal de la pierna de alpaca,
cerdo y cordero.. 89
ANEXO 4: Contenido de Colesterol en diferentes carnes 90
ANEXO 5: Valor Calórico de la carne de ovino y de otras especies de abasto. 90
ANEXO 6: Composición en 100 g de quinua .. 91
ANEXO 7: Producción anual de Quinua en toneladas – Perú 93
ANEXO 8: Exportación Anual de la Quinua en toneladas – Perú 93
ANEXO 9: Producción de quinua por departamento (T.M) 93
ANEXO 10: Tabla de composición en 100 gramos de cebada 94
ANEXO 11: Tabla de composición de alimentos industrializados
Contenido en 100 gramos de Embutido Crudo .. 95
ANEXO 12: Contenido de colesterol en la sangre de Alpaca, llama, ovino y vacuno 94
ANEXO 13: Composición proximal de las carnes de principales
especies de consumo (%) .. 95
ANEXO 14: Cartilla de selección ... 96
ANEXO 15: Cartilla de evaluación ... 96
ANEXO 16: Análisis proximal de la harina de cebada.. 97
LISTA DE ABREVIATURAS UTILIZADAS

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>v. gr.</td>
<td>Por ejemplo</td>
</tr>
<tr>
<td>MINAG</td>
<td>Ministerio de Agricultura</td>
</tr>
<tr>
<td>INIA</td>
<td>Instituto Nacional de Investigación Agraria</td>
</tr>
<tr>
<td>CIP</td>
<td>Centro Internacional de la Papa</td>
</tr>
<tr>
<td>INEI</td>
<td>Instituto Nacional de Estadística e Informática</td>
</tr>
<tr>
<td>mg</td>
<td>milígramo</td>
</tr>
<tr>
<td>g</td>
<td>gramo</td>
</tr>
<tr>
<td>HAP</td>
<td>hidrocarburos aromáticos policíclicos</td>
</tr>
<tr>
<td>Aw</td>
<td>Actividad de Agua</td>
</tr>
<tr>
<td>mm</td>
<td>milímetros</td>
</tr>
<tr>
<td>m.s.n.m.</td>
<td>metros sobre el nivel del mar</td>
</tr>
<tr>
<td>FAO</td>
<td>Organización de las Naciones Unidas para la Alimentación y la Agricultura</td>
</tr>
<tr>
<td>kg</td>
<td>kilogramo</td>
</tr>
<tr>
<td>°C</td>
<td>grados centígrados</td>
</tr>
<tr>
<td>NTP</td>
<td>Norma Técnica Peruana</td>
</tr>
<tr>
<td>Kcal</td>
<td>kilo caloría</td>
</tr>
<tr>
<td>ppm</td>
<td>partes por millón</td>
</tr>
<tr>
<td>cm</td>
<td>centímetro</td>
</tr>
</tbody>
</table>
et al. y colaboradores

h hora

pH potencial de Hidrogeniones

Mb Mioglobina

MetMb Metamioglobina

NOMb Nitrosomioglobina

NOMetMb óxido nítrico metamioglobina;

NO-hemocromógeno nitrosohemocromógeno.

mg/kg miligramo por kilogramo

atm atmosfera.
I. INTRODUCCIÓN

El ovino es una especie que fue introducida por su lana en el siglo XVI por los españoles (MINAG, 2013), sin embargo el precio y el volumen que se produce actualmente no es competitivo. Por ello, una alternativa en la producción de ganado ovino sería el aprovechamiento de su carne. Tradicionalmente, la carne de esta especie es consumida por los criadores y sus familias, siendo necesario orientar su uso a formas que propicien una mayor demanda y por consiguiente mejore el ingreso económico de los productores.

La carne de ovino adulto por lo general presenta un sabor y aroma poco agradable para el consumidor, debido a la acumulación del ácido 4-etiloctanoico, lo que hace que la carne de los animales viejos de las especies ovina y caprina sea rechazada sensorialmente (Sutherland y Ames, 1996).

Debido al problema de comercialización que existe con la carne de ovino se planteó el proyecto “Reducción de la pobreza en los altos andes a través de la producción, transformación y comercialización de productos agropecuarios” participando el INIA de España y el Centro Internacional de la Papa (CIP) de Perú quienes financiaron el estudio con el fin de evaluar la
factibilidad de emplear la carne de cordero en productos cárnicos. En este proyecto Cabrera (2003), realizó un ensayo elaborando Jamón Ahumado siendo el de mayor aceptación el de pernil de cordero, al cual se le adicionó la enzima transglutaminasa TG – BP ®, y se le ahumó por 6 horas a una temperatura que estuvo entre 50 y 60ºC. El producto en la prueba de aceptabilidad tuvo un calificativo de “me gusta mucho” equivalente a un puntaje de 8.3 sobre 10.

Zorogastúa (2004), evaluó las combinaciones de carne de Alpaca y Cordero en la elaboración de embutidos. Ellos incluyeron grasa de cerdo como insumo en la elaboración de Chorizo ahumado, y determinaron que la formulación con mayor factibilidad y mayor preferencia sensorial fue la que tuvo 33% de recortes de carne de cordero, 38% de recortes de carne de alpaca y 28% de grasa dura de cerdo.

Los trabajos reportados de elaboración de productos cárnicos a base de carne de ovino no incluyen el uso de carne de ovino adulto, por tal motivo el objetivo de este trabajo es desarrollar y evaluar sensorialmente un cabanossi a partir de carne de ovino adulto enriquecido con quinua y harina de cebada con el fin de mejorar su valor nutritivo y darle un valor agregado.
II. REVISION BIBLIOGRAFICA

2.1 EL OVINO

La población mundial de ovinos es de 1,083 millones a nivel de los cinco continentes (MINAG, 2008). Según los resultados del IV Censo Nacional Agropecuario del Perú hay 9 523 198 ovinos, siendo el departamento de Puno el que cuenta con la mayor cantidad (2 millones 88 mil 332), lo que equivalente al 21.9 % del total. (MINAG, 2014). El ovino se cría bajo un sistema extensivo, el cual se basa en el consumo de pastos naturales que por lo general es complementaria a otras crianzas como la de los camélidos (Díaz, 2007).

Cuadro 1. Población de ganado ovino, según censos agropecuario.

<table>
<thead>
<tr>
<th>Año</th>
<th>Total</th>
<th>Diferencia</th>
<th>Variación porcentual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>23 621 914</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>12 809 084</td>
<td>-10 812 830</td>
<td>-45,8</td>
</tr>
<tr>
<td>1994</td>
<td>12 085 683</td>
<td>-723 401</td>
<td>-5,6</td>
</tr>
<tr>
<td>2012</td>
<td>9 523 198</td>
<td>-2 562 485</td>
<td>-21,2</td>
</tr>
</tbody>
</table>

Datos preliminares.

<table>
<thead>
<tr>
<th>Año</th>
<th>Producción de carne (Tm)</th>
<th>Precio (s./ kg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>31 989</td>
<td>3,13</td>
</tr>
<tr>
<td>2002</td>
<td>31 447</td>
<td>3,29</td>
</tr>
<tr>
<td>2003</td>
<td>31 941</td>
<td>3,29</td>
</tr>
<tr>
<td>2004</td>
<td>33 695</td>
<td>3,27</td>
</tr>
<tr>
<td>2005</td>
<td>33 686</td>
<td>3,31</td>
</tr>
<tr>
<td>2006</td>
<td>33 900</td>
<td>3,32</td>
</tr>
<tr>
<td>2007</td>
<td>33 839</td>
<td>3,49</td>
</tr>
<tr>
<td>2008</td>
<td>33 374</td>
<td>3,90</td>
</tr>
<tr>
<td>2009</td>
<td>33 459</td>
<td>4,13</td>
</tr>
<tr>
<td>2010</td>
<td>33 664</td>
<td>4,46</td>
</tr>
<tr>
<td>2011</td>
<td>35 255</td>
<td>4,51</td>
</tr>
</tbody>
</table>

Fuente: Instituto Nacional de Estadística e Informática, IV Censo Agrario 2012

El 70% de la carne de ovino que se produce en el Perú se comercializa de manera informal y el 30% restante es destinado para el comercio formal y autoconsumo (Díaz, 2007). De esta manera el precio de la carne en el año 2011, según estudios preliminares del IV Censo Agropecuario, estuvo en s/. 4,51 el kilo (Cuadro 2).

2.1.1 Clasificación taxonómica del ovino

Según el Centro de Estudios Agropecuarios (2001), los ovinos se clasifican:

- **Orden**: Artiodáctilos
- **Sub-orden**: Ruminantes
- **Familia**: Bóvidos
- **Sub-familia**: Óvidos
2.1.2 Clasificación de la Carne de Ovino

Portolano (1990) menciona que la carne ovina puede clasificarse del siguiente modo:

a. **Cordero**

 Corresponde a los animales sacrificados durante o al final de la lactación. Son animales con edades no inferiores a los 25 días. Cuando se habla de sacrificio tardío en corderos se refiere a animales que están al final de la etapa de lactación es decir crías de unos 40 días. La carne de estos animales es blanduzca, cartilaginosa y sin gusto.

b. **Cordero de sebo precoz**

 Son animales sacrificados entre los 70 y 100 días. La alimentación es a base de leche natural y/o artificial, la cual es suplementada a partir de los 35 - 40 días con piensos. Las carnes de estos corderos son, por gusto y sapidez, decididamente superiores a las de los lechales.

c. **Cordero pascual**

 Animal sacrificado entre los 5 y 7 meses, el cual es solicitado por la sapidez de su carne lo que permite múltiples modalidades de cocinado. El color de su carne es rojizo, con poca grasa perirrenal siendo más abundante en las hembras.

d. **Oveja adulta**

 Son apreciadas por pocos consumidores ya que a pesar de considerarlas de baja calidad, ofrecen características sensoriales aceptables.

 La carne de Cordero proviene de animales menores de un año. Los Corderos criados durante seis meses con leche dan carne casi blanca denominándose a este lechazo. La denominación carne
de óvido se emplea para carne de animales mayores, tanto hembras como machos castrados y de hembras que no se han utilizado para la reproducción (Planells et al., 2001).

Según la cantidad de grasa que tenga la canal se puede clasificar en: magro “in carne” (buen estado de Carne o musculado), semigraso, graso y muy graso (Portolano, 1990).

2.1.3 Beneficio del ovino

En el momento del sacrificio los animales deben estar sanos y fisiológicamente normales. Los animales que se van a sacrificar deben haber descansado 6 horas como mínimo en los corrales de descanso, si han viajado durante más de 12 horas deberán descansar como mínimo 12 horas. En el corral de descanso recibirán solamente agua y es durante esta etapa donde se realiza la inspección ante mortem destinándose a los animales sanos para beneficio (MINAG, 2012).

Según el SENASA (2004), en el Perú el Reglamento Tecnológico de Carnes clasifica la canal de ovino de la siguiente forma:

a. **Extra (cordero)**. Carcasas de capones (escroto cicatrizado), hasta con dos (2) dientes permanentes al año de edad (Cuellar et. al., 2011), de buena conformación y buen acabado, con grasa de cobertura, infiltración y de reserva, de consistencia firme y serosa (riñón cubierto).

b. **Primera**. Carcasas de ovinos hembras y machos castrados (escroto cicatrizado), de cualquier edad, de buena conformación y acabado, con grasa de cobertura, infiltración y de reserva de consistencia firme y serosa (riñón cubierto).

c. **Segunda**. Carcasa de ovinos de cualquier edad y sexo, de regular conformación y buen aspecto de la carne.

d. **Procesamiento**. Carcasas de ovinos que presentan un estado deficiente de carnes, exagerada pigmentación metabólica, traumatismos muy extendidos u otras condiciones que los hacen inadecuados para el consumo humano directo.
Figura 1. Despiece de la canal de oveja (Cañéque, 2005).

2.1.4 Características principales de la carne de ovino

Ballesteros (1997), mencionan las siguientes ventajas de la carne de cordero:

a. Permite efectuar mejores cortes para su expendio y comercialización.

b. La carne de cordero ofrece mayor ternura y suculencia, con un excelente olor.

c. Es de rápido cocimiento.

d. Proporciona 20.8\% de proteína de alta calidad.

e. Proporciona minerales especialmente fósforo y hierro.

f. Proporciona vitaminas en especial las del grupo B.

g. Es altamente digestible.
2.1.5 Rendimiento de los cortes de carne

Según Cabrera (2003) el rendimiento para un cordero extra, sin sujeción a engorde es como sigue:

Cuadro 3. Rendimiento en cortes de carne de cordero extra

<table>
<thead>
<tr>
<th>Cortes</th>
<th>Kg.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piernas</td>
<td>5.000</td>
<td>30.48</td>
</tr>
<tr>
<td>Brazuelos</td>
<td>4.877</td>
<td>10.56</td>
</tr>
<tr>
<td>Chuleta</td>
<td>1.690</td>
<td>11.13</td>
</tr>
<tr>
<td>Lomo</td>
<td>1.782</td>
<td>2.690</td>
</tr>
<tr>
<td>Falda</td>
<td>0.427</td>
<td>5.340</td>
</tr>
<tr>
<td>Pecho</td>
<td>1.063</td>
<td>6.640</td>
</tr>
<tr>
<td>Pescuezo</td>
<td>0.307</td>
<td>1.910</td>
</tr>
<tr>
<td>Resto</td>
<td></td>
<td>31.25</td>
</tr>
</tbody>
</table>

TOTAL 16.00 100.0

Fuente: Cabrera (2003)

2.1.6 Calidad de canal

El valor económico de la canal depende de la cantidad y el reparto de la carne que se obtiene de ella. Este concepto engloba la composición regional o proporción de las piezas de diferentes categorías, y la composición tisular o proporción de cada tipo de tejido: músculo, hueso y grasa. Para determinar la composición tisular se utilizan métodos de fácil realización, que consumen poco tiempo y son no destructivos. Para la clasificación de las canales se emplean criterios subjetivos como: los métodos de evaluación de la conformación, el grado de engrasamiento y el color de la carne y de la grasa. Estos son evaluados visualmente por jueces entrenados, utilizando descripciones y patrones fotográficos de referencia (Cañeque, 2005).
Criterios de calidad:

a. Criterios de calidad del animal de abasto: edad, sexo y peso (división en especies y categorías).

b. Criterios de calidad de la canal: conformación, engrasamiento y características de la carne y la grasa.

c. Criterios de calidad de la carne: veteado, consistencia y humedad, color de la grasa, consistencia de la grasa dorsal.

La clasificación debe realizarse inmediatamente después del faenado. Las características de calidad de las canales se establecen a partir del peso de la canal caliente, la conformación y el grado de engrasamiento. Las que proporcionan información sobre el músculo, la grasa y el hueso de la canal, sobre la cantidad y composición de las piezas, la cantidad de tendones y la constitución de la musculatura y el tejido graso (Schön, 1973).

Cuadro 4. Principales características de la canal que influyen en su valor comercial

<table>
<thead>
<tr>
<th>Características</th>
<th>Parámetros sobre los influye</th>
<th>Estimadores de la calidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso y edad</td>
<td>Composición tisular (variación entre tejidos y dentro de un tejido)</td>
<td>Conformación</td>
</tr>
<tr>
<td></td>
<td>Tamaño de las piezas</td>
<td>Estado de engrasamiento</td>
</tr>
<tr>
<td></td>
<td>Calidad de la carne</td>
<td></td>
</tr>
<tr>
<td>Raza</td>
<td>Composición tisular (variación entre tejidos y dentro de un tejido)</td>
<td>Peso canal caliente</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conformación</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Estado de engrasamiento</td>
</tr>
</tbody>
</table>
2.1.7 Composición química y valor nutritivo de la carne de ovino

El análisis más básico de la composición de la carne es la determinación de la composición proximal, es decir, del contenido de humedad, grasa, proteína y cenizas. Estos análisis revelan el valor nutritivo básico de un producto y como puede ser combinado con otras materias primas para alcanzar el nivel deseado de los distintos componentes principales de una dieta (Izaurieta, 1994). Para estas determinaciones, con fines de caracterización, se suelen utilizar el musculo *Longissimus dorsi*.

En general se puede decir que el musculo de los animales adultos contiene 70-78% de agua, 15-22% de proteínas, 1-13% de grasa, 1% minerales y menos de 2% de hidratos de carbono (Pearson y Young, 1989). Sin embargo, la carne de ovino contiene 75.20% de Humedad, 20.32% de Proteína, 3.13% de Grasa y 0.96% de Cenizas (Cabrera, 2003).

Existen factores que influyen sobre la composición química de la carne, como el genotipo, el estado fisiológico, la dieta, el sistema de manejo, el tipo de musculo, etc. (Huerta *et al.*, 2003).
En cuanto al colesterol, el ovino presenta valores de 200.00 mg colesterol/dl de sangre (Garnica, 1985). Por otro lado, el contenido de colesterol en la carne de Ovino criollo es de 88.12 mg / 100 g de carne muscular y el ovino mejorado 70 – 105 mg / 100 g de carne muscular (Téllez, 1992).

2.2 LA QUINUA

La quinua (Chenopodium quinoa), es un cultivo de granos nativos, cultivado en Sudamérica. Es una hierba anual de hojas anchas, semillas de color blanco o rosado que crecen en grandes grupos (Wood, 1989). Las semillas de la quinua son ricas en proteínas oscilando estas entre los 12 y 19% (Risi et al., 1984). La calidad de las proteínas en la quinua cocida y las semillas de quinua lixiviada son equivalentes a la de la leche (Gross et al., 1989).

La quinua tiene bajos requisitos para su crecimiento, no necesitando abundante agua. Además, crece a grandes alturas con aire frío, sol, temperaturas bajo cero y en suelos pobres desde arenosos hasta alcalinos. Todo esto ha devenido en un alto interés de su cultivo (Risi et al., 1984). Sin embargo, una de sus principales deficiencias de este grano es la presencia de componentes de saponina en el pericarpio de lassemillas que contribuyen a la amargura y a la acción detergente que presenta en el agua (Reichert et al., 1986).

2.2.1 Clasificación botánica

En la clasificación de la quinua se han empleado diferentes criterios, que van desde la simple enumeración de especies y variedades, hasta la descripción botánica correspondiente. Vidalon (1944) considera a la quinua dentro de la siguiente clasificación botánica:
El mismo autor menciona que es una planta originaria de la Hoya del Titicaca (Perú y Bolivia), y se cultiva a partir de 2000 a 3800 m.s.n.m, razón por la cual tolera bajas temperaturas, además de exigir muy poca agua ya que inclusive desarrolla bien en suelos pobres.

2.2.2 Variedades Nacionales y características de su Cultivo

Tejada (1994) menciona que las variedades de quinua que existen en el Perú son las siguientes:

a. **Blanca de Juli:** Cultivada en los alrededores del Lago Titicaca, zona que tiene condiciones climáticas favorables permitiendo tener rendimientos bastante buenos, razón por la cual en esta zona se halla la mayor concentración del cultivo de quinua del Perú. Esta variedad se caracteriza por tener un grano poco amargo y de tamaño pequeño.

b. **Kancolla:** De alto rendimiento. granos de tamaño intermedio. Se cultiva en la zona de Cabanillas (Puno).

c. **Sajama:** Es una variedad de origen boliviano. Actualmente por sus características, se está incentivando su producción en la zona de Puno. Su ciclo vegetativo es corto (150 días)
aproximadamente y su rendimiento alto; el grano es de color blanco, tamaño grande y sabor dulzón debido a que está libre de saponinas.

d. **Blanca Real y Rosada de Junín:** Se cultivan en la Sierra Central y en el departamento de Junín principalmente.

Existen otras variedades nacionales de menor producción como son: Blanca Dulce, Rosada Dulce, y Amarilla de Puno.

2.2.3 Partes del grano de quinua

El fruto es un aquenio cubierto por el perigonio que se desprende con facilidad al frotarlo cuando está seco. El pericarpio está pegado a la semilla y esta se encuentra envuelta por el episperma donde parece estar localizada la saponina.

El embrión está formado por los cotiledones y la radícula, constituyendo la mayor parte de la semilla que envuelve el perisperma como anillo, tal como se puede apreciar en la Figura 2. En el embrión de la semilla el contenido de proteína es mucho mayor que en el perisperma, lo que es comparable con lo que ocurre en el embrión de todos los cereales.

Por otro lado, es en el perispermo donde se halla concentrado el almidón presente en el grano de quinua a diferencia de la mayoría de cereales en los que se encuentra en el endospermo. (Tapia *et al.*, 1979).
2.2.4 Valor nutricional de la quinua

El consumo de quinua es cada vez más popular entre las personas interesadas en la mejora y el mantenimiento de su estado de salud mediante el cambio de los hábitos alimenticios, ya que es un excelente ejemplo de “alimento funcional” (que contribuye a reducir el riesgo de varias enfermedades y/o ejerciendo promoción de la salud). Además, es fácil de digerir, no contiene fitosteroles y se presta para la preparación de dietas completas y balanceadas. La quinua también puede ser utilizada tanto en las dietas comunes como en la alimentación vegetariana, así como para dietas especiales de determinados consumidores como adultos mayores, niños, deportistas de alto rendimiento, diabéticos, celiacos y personas intolerantes a la lactosa (FAO, 2013)
2.2.5 Composición química de la quinua

La verdadera importancia de la quinua estriba en el contenido de sus proteínas, así como en el contenido de vitaminas y minerales (Vargas, 1977). Este cereal destaca por su contenido de proteínas que varía de 12.5 a 16.7%. El 37% de las proteínas que posee la quinua está formado por aminoácidos esenciales (FAO, 2013).

Existen 3 000 variedades conocidas en el Perú, la variedad Sajama se caracteriza por tener elevado contenido de albúmina y globulina mientras que la quinua Blanca por su elevado tenor de glutelinas y proteínas insolubles; mientras las prolaminas se encuentran en menor proporción en ambas variedades, tal como se puede apreciar en la Figura 3 (Tellería, 1978).

Si se hace una comparación de la quinua con otros cereales esta tiene mayor cantidad de: ácido glutámico, ácido aspártico, isoleucina, lisina, fenilalanina, tirosina y valina. El ácido
glutámico, participa en los procesos de producción de energía para el cerebro y en fenómenos tan importantes como el aprendizaje, la memorización y la plasticidad neuronal. El ácido aspártico mejora la función hepática y es indispensable para el mantenimiento del sistema cardiovascular. La tirosina tiene un importante efecto antiestrés y juega un papel fundamental en el alivio de la depresión y la ansiedad, entre otras funciones. Finalmente, la cantidad de lisina que hay en la quinua es el doble que en los demás cereales (FAO, 2013).

Tellería (1978), indica que la lisina es un aminoácido de gran importancia en el crecimiento de los niños, mejora la función inmunitaria al colaborar en la formación de anticuerpos, favorece la función gástrica, colabora en la reparación celular, participa en el metabolismo de los ácidos grasos, ayuda al transporte y absorción del calcio e incluso parece retardar o impedir; junto con la vitamina C; las metástasis cancerosas (FAO, 2013).

En cuanto a la isoleucina, la leucina y la valina todas ellas participan en la producción de energía muscular, mejoran los trastornos neuromusculares, previenen el daño hepático y permiten mantener en equilibrio los niveles de azúcar en sangre, entre otras funciones (FAO, 2013).

Cuadro 5. Aminoácidos esenciales en la quinua, comparado con otros cereales (g/10kg bruto)

<table>
<thead>
<tr>
<th>Aminoácido</th>
<th>Trigo</th>
<th>Cebada</th>
<th>Avena</th>
<th>Maíz</th>
<th>Quinua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoleucina</td>
<td>32</td>
<td>32</td>
<td>24</td>
<td>32</td>
<td>68</td>
</tr>
<tr>
<td>Leucina</td>
<td>60</td>
<td>63</td>
<td>68</td>
<td>103</td>
<td>104</td>
</tr>
<tr>
<td>Lisina</td>
<td>15</td>
<td>24</td>
<td>35</td>
<td>27</td>
<td>79</td>
</tr>
<tr>
<td>Fenilalanina</td>
<td>34</td>
<td>37</td>
<td>35</td>
<td>33</td>
<td>59</td>
</tr>
<tr>
<td>Tirosina</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>14</td>
<td>41</td>
</tr>
<tr>
<td>Cisteína</td>
<td>26</td>
<td>28</td>
<td>45</td>
<td>31</td>
<td>Trazas</td>
</tr>
<tr>
<td>Metionina</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Treonina</td>
<td>27</td>
<td>32</td>
<td>36</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>Triptófano</td>
<td>6</td>
<td>11</td>
<td>10</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>Valina</td>
<td>37</td>
<td>46</td>
<td>50</td>
<td>49</td>
<td>76</td>
</tr>
</tbody>
</table>

Fuente: Tapia et al (1979)
En el Cuadro 5, se puede observar que la quinua supera a cuatro cereales en cinco de los aminoácidos esenciales. Estos resultados se dan como porcentaje de proteína total, pudiendo obtenerse una mejor comparación cuando se indican los gramos de aminoácidos suministrados por kilogramo de alimento.

Las propiedades químicas de las proteínas de la quinua sufren cambios a temperaturas menores a 70°C, especialmente en su solubilidad, estos pueden estar asociados con cambios nutricionales si la intensidad del calor es suficientemente prolongada (Tapia et al, 1979). Estudios realizados para determinar el efecto térmico en la composición de los aminoácidos esenciales han determinado que un tratamiento térmico a 87°C mejora la proporción de lisina y metionina, produciendo un incremento del valor biológico (Tellería, 1978).

Cuadro 6. Composición de los carbohidratos de tres variedades de quinua (% de materia prima)

<table>
<thead>
<tr>
<th>Componente</th>
<th>Roja</th>
<th>Amarilla</th>
<th>Blanca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almidón</td>
<td>59.2</td>
<td>58.1</td>
<td>64.2</td>
</tr>
<tr>
<td>Monosacaridos</td>
<td>2.0</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Disacaridos</td>
<td>2.6</td>
<td>2.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Fibra cruda</td>
<td>2.4</td>
<td>3.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Pentosanas</td>
<td>2.9</td>
<td>3.0</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Fuente: FAO, 2013

Tapia et al. (1978), mencionan que el contenido de carbohidratos es variable según la variedad de quinua. La composición de los carbohidratos según la variedad de la quinua se puede observar en el cuadro 8.

El contenido de vitaminas en la quinua es alto, presenta tiamina y riboflavina en cantidades de 0.41 y 0.29 mg respectivamente; además presenta 5.1 mg de Ácido Ascórbico el cual no está
presente en otros cereales (Collazos, 1975). En cuanto a los minerales, el grano de quinua posee valores medios de calcio y fósforo que son superiores a los demás cereales tal como el trigo (Bruin, 1964). La cantidad de minerales según variedad de quinua se puede observar en el (Anexo 6).

Dentro de las propiedades de la quinua tenemos la gelatinización. Estudios indican que la temperatura de gelatinización del almidón de la quinua está comprendida en un rango de 57 a 64 °C; es decir, a esta temperatura se produce el máximo hinchamiento de los gránulos y por ende un alto grado de absorción de agua haciendo que las dispersiones de este polímero alcancen grandes viscosidades (Atwell, 1983).

2.2.6 Consumo de la quinua

a. Producción y consumo de la quinua

El Perú en el año 2012 ha producido 44207 toneladas de quinua. El departamento de Puno es el principal productor de este cereal con aproximadamente el 82% de la producción nacional. Le siguen en orden de importancia Junín, Arequipa, Cusco, Huancavelica, Áncash, Ayacucho y Apurímac. A nivel mundial las zonas de producción se encuentran en los Andes, desde Colombia hasta Chile y Argentina, habiendo sido introducida en el continente Europeo y en Norteamérica (MINAG, 2013).

b. Aprovechamiento industrial del grano de quinua

La Estación Experimental Agroindustrial, antes llamada Instituto Nacional de Desarrollo Agroindustrial, luego de realizar diversos ensayos sustituyendo la harina de trigo por harina de quinua determinó que se puede realizar la sustitución sin afectar la aceptación de los productos de panadería como galletas, pan, fideos, etc. Asimismo, se ha determinado que el porcentaje de sustitución para los fideos varía de 30 a 40%; de aumentar a un 50% o más, la calidad
baja tanto en sabor como consistencia (Luna de la Fuente, 1957). En el caso de galletas se acepta un porcentaje máximo de harina de quinua del 60% (Tapia et al., 1979).

Estudios han demostrado que conforme el contenido de harina de quinua aumenta, el volumen del pan disminuye, la textura se vuelve inferior y el color de la miga se acentúa desde crema hasta marrón oscuro, concluyéndose que se puede mezclar con harina de trigo a un nivel de 10%, obteniéndose un pan de excelente calidad, buen peso, volumen, color, sabor y de mayor poder alimenticio (FAO, 2013).

El almidón de quinua tiene una excelente estabilidad frente al congelamiento y la retrogradación. Estos almidones podrían ofrecer una alternativa interesante para sustituir almidones modificados químicamente. El almidón tiene posibilidades especiales de uso en la industria debido al pequeño tamaño del gránulo de almidón, por ejemplo, en la producción de aerosoles, pastas, producción de papel autocopiante, postres alimenticios, excipientes en la industria plástica y talcos (FAO, 2013).

Las saponinas que se extraen de la quinua amarga se pueden utilizar en la industria farmacéutica, cuyo interés por aquello se basa en el efecto de inducir cambios en la permeabilidad intestinal, lo que puede colaborar en la absorción de medicinas particulares y en los efectos hipocolesterolémicos. Adicionalmente la saponina tiene propiedad antibiótica y antifúngica, entre otros atributos farmacológicos (FAO, 2013). Asimismo, es toxica para algunos insectos, habiéndose desarrollado en Bolivia un bioinsecticida el cual fue probado con éxito (FAO, 2013).
2.3 HARINA DE CEBADA

2.3.1 Clasificación botánica

La cebada (Hordeum spp.) es una planta monocotiledónea anual que se encuentra dentro de
la familia Poaceae o gramínea. El género Hordeum incluye a las especies H. disticum, H.
hexasticum y H. vulgare (Mateo, 2005). Esta última antiguamente fue llamada como ptisona, es
originaria de Egipto y del oriente próximo, fue introducida a América por los pobladores
provenientes de Europa. Actualmente se encuentra distribuida en todas las zonas templadas del
planeta (Cáceres, 1999).

2.3.2 Variedades Nacionales y características de su Cultivo

Las variedades modernas son desarrolladas para un grupo reducido de cultivos nativos e
introducidos, que se caracterizan porque su siembra es intensiva, dirigida a la agroexportación, la
agroindustria y los grandes mercados. En el Registro de Cultivares Comerciales se reporta la
inscripción de 8 variedades de cebada (INIA, 2009).

Su cultivo se conoce desde tiempos remotos y proceden del Sudeste de Asia y África
septentrional. Se cree que fue una de las primeras plantas domesticadas al comienzo de la
agricultura. En excavaciones arqueológicas realizadas en el valle del Nilo se descubrieron restos de
cebada que datan de 15,000 años de antigüedad, también indican el uso muy temprano del grano de
cebada molido. Se establece como un cultivo monófito y también se utiliza mezclada con otras
gramíneas como la avena (para prolongar el periodo de aprovechamiento); es recomendable
instalar en rotación con cultivos de leguminosas o papa (Tapia, 1997).

2.3.4 Partes de la planta de la cebada

El sistema radicular es fasciculado, fibroso y alcanza poca profundidad en comparación con
el de otros cereales. El tallo es erecto, grueso, formado por unos seis u ocho entrenudos, los cuales
son más anchos en la parte central que en los extremos junto a los nudos. La altura de los tallos
depende de las variedades y oscila desde 0.50 cm. a un metro. Las hojas son estrechas y de color verde claro. La planta de cebada suele tener un color verde más claro que el del trigo y en los primeros estadios de su desarrollo la planta de trigo suele ser más erguida (Ortega, 1990). La inflorescencia es en espiga, con tres espiguillas en cada nudo del raquis. Espiguillas con una flor cada una; puede ser fértil solo la flor central (cebada de dos carrera) o las tres flores (cebada de cuatro y seis carreras). Las semillas o frutos es una cariópside (Berdonces, 1998)

2.3.5 Valor nutricional de la cebada

En cuanto a los usos medicinales, la decocción de la semilla se usa para tratar enfermedades gastrointestinales, renales, exantemas (erupciones cutáneas) e inflamaciones. En gargarismos se usa para desinflamar la garganta; en cataplasma para tratar el lumbago. Se le han atribuido propiedades calmantes y diuréticas.

2.3.6 Composición química de la cebada

Por otro lado en la Tabla de Composición Nutricional (Anexo 10) de los alimentos tenemos que en 100g de cebada hay: 306 Energía Kcal,10,0g de agua, 8,60g de proteínas, 0,7g de grasa, 77,4g carbohidratos totales y 3,3g de cenizas

2.3.7 Consumo de la cebada

a) Producción y consumo de la cebada

En el 2012 la producción de cebada en Perú fue de 213,3 mil TM en un total de 61,8 mil hectáreas sembradas. Las principales regiones productoras del cereal son: Puno, Cusco, Junín y Huancavelica, que en conjunto producen el 48% del volumen. Sin embargo, los departamentos que
poseen mayor índice de rendimiento por Ha son Arequipa (2.3 mil TM/Ha) y Tacna (1.8 mil TM/Ha) (Agencia Agraria de Noticias, 2013).

b) Aprovechamiento industrial de la cebada

La cebada se emplea en la alimentación del ganado, tanto en grano como en verde para forraje, en vacuno de carne, en la alimentación porcina, en avicultura y como materia prima para piensos. En la industria se emplea en la elaboración de azúcares, preparados de productos alimenticios y elaboración de harinas para panificación, como sustitutivo del café, en la fabricación de cerveza, en destilería para obtener alcohol y en la preparación de maltas especiales (Departmen of Health and Ageing Office of the Gene Technology Regulator, 2008)

La cebada fermentada se denomina malta y posee principios activos similares a la adrenalina, de tipo simpaticomímético. Además, contiene fermentos como la maltita, diastasa que favorece la digestión de los hidratos de carbono. La malta se elabora iniciando el proceso de germinación de la cebada, a la cual se le priva de la plántula después de desecarla. Este producto se emplea en la elaboración de la cerveza y el whisky (Berdonces, 1998)

2.4 EMPLEO DE AGREGADOS EN PRODUCTOS CÁRNICOS

Según Zapata (1994), animales de descarte pueden ser aprovechados en embutidos cocidos, ahumados y / o fermentadas embutidos, como el salami (carne de res, cerdo y ovejas / cabras, que contiene tocino), "Krakauer" (embutido de carne ovina/caprina o suína), "iyoner" (producto similar a la composición salami, pero sin someterse a fermentación), salchichas tipo Viena, y hamburguesa.

Las propiedades nutricionales que le confieren a los productos cárnicos la adición de ingredientes que contengan fibra, antioxidantes y demás compuestos bioactivos son muy bien conocidas. En la actualidad, muchos de ellos han sido incluidos en productos cárnicos sin afectar su estabilidad ni aceptabilidad (Jiménez, 2001).
En los sustitutos de grasa en productos cárnicos es importante la interacción que tienen estos con los componentes del flavor, en tal sentido se ha encontrado que algunos carbohidratos como pectinas, celulosa microcristalina y algunos almidones modificados no tiene una interacción significativa como si lo tienen los almidones nativos debido a su estructura helicoidal. Otros sustitutos de grasa con base proteica presentan menor interacción con los aldehídos responsables del sabor que las mismas grasas (Echeverri et al., 2004).

García et al. (2002) indican que una concentración al 1.5% de fibra de frutas y cereales confiere características aceptables en cuanto a adhesividad y dureza a salchichas frente a las que se elaboraron con 3% de concentración.

2.5 EMBUTIDOS

En el año 2005 la producción de embutidos creció en un 2.7%, aunque fue un porcentaje menor a las expectativas de crecimiento de inicios de año, los ingresos por este rubro representaron entre 70 - 75 millones de dólares. El consumo de embutidos en Perú está relacionado al número de días de fines de semana largo y fiestas en el (Ministerio de trabajo y promoción del empleo, 2005).

En el Perú la productividad y capacidad instalada de la industria de embutidos opera al 75%. La mayor parte de los insumos que se utilizan son de origen nacional siendo solo un pequeño porcentaje importado (Ministerio de trabajo y promoción del empleo, 2005).

La Norma Técnica Peruana (NTP) 201.007 (1999), define a los embutidos como productos cárnicos elaborados a partir de carne o grasa, con o sin otros productos o subproductos animales aptos para el consumo humano, adicionando o no aditivos alimentarios, especias y agregados de origen vegetal; los cuales son embutidos en tripas naturales o artificiales.
2.5.1 Clasificación de embutidos según el tratamiento térmico Norma Técnica Peruana 201.007 (1999)

2.5.1.1 Sin tratamiento Térmico

Los embutidos crudos, los cuales en su procesamiento utilizan materias primas crudas, curadas o no y que no requieren tratamiento térmico. El ahumado no está considerado dentro del proceso de tratamiento térmico por lo tanto los embutidos crudos pueden ser ahumados o no. El embutido crudo se fabrica a partir de carne y tocino crudos y picados, a los que se añade sal común, sal de nitrito o nitrato potásico como sustancias curantes, azúcar, especias, otros condimentos y aditivos (Frey, 1983). Dentro de ellos tenemos los tradicionales como la salchicha de Huacho y el chorizo fresco.

2.5.1.2 Con tratamiento térmico

Entre los productos cárnicos con tratamiento térmico están la morcilla, el relleno, el paté, el queso de chancho y el chicharrón de prensa, el jamón del país, las jamonadas, la mortadela, la salchicha tipo frankfurter, la salchicha tipo Viena y el salchichón cocido.

2.6 CABANOSSI

2.6.1 Definición

El Cabanossi o Kabanosy es una salchicha de origen Polaco, elaborada a partir de porciones de carne de cerdo magro y res magra picadas, tiene un aroma mixto a ahumado y a especias. Es condimentado con rocoto y embutido en tripa natural durante su elaboración es ahumado perdiendo humedad. El producto tiene una longitud que varía entre 15 y 25 centímetros, es de textura tierna y consistente y tiene una duración de 30 días a 3°C. (Braedt, 2014).
2.6.2 Valor nutritivo del Cabanossi

El cabanossi tiene 227 Kcal por cada 100 g de producto; asimismo presenta un 18% de Proteínas, 16.7% de grasa, 62.4% de agua y 2.9% de cenizas (Anexo 11) (Bejarano et al, 2002).

2.6.3 Formulaciones para Cabanossi

Cuadro 7. Principales formulaciones para Cabanossi

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MASA PRINCIPAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne industrial</td>
<td></td>
<td>40.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carne vacuna</td>
<td></td>
<td>30.00</td>
<td>33.30</td>
<td></td>
</tr>
<tr>
<td>Piernas de cerdo</td>
<td></td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panceta de cerdo</td>
<td></td>
<td>60.00</td>
<td>26.60</td>
<td></td>
</tr>
<tr>
<td>Carne de cerdo magra</td>
<td></td>
<td>40.00</td>
<td>33.30</td>
<td></td>
</tr>
<tr>
<td>Panceta de cerdo</td>
<td></td>
<td>60.00</td>
<td>26.60</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>ADITIVOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sal</td>
<td>2.00</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales de cura (0.5% nitrato)</td>
<td>1.80</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales de cura (2.5% nitrato)</td>
<td>0.25</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comino</td>
<td></td>
<td>0.05</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Dextrosa</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pimienta negra moida</td>
<td>0.38</td>
<td>0.20</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Pimienta blanca</td>
<td></td>
<td></td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Pimentón picante</td>
<td></td>
<td></td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Pimentón dulce</td>
<td></td>
<td></td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Nuez moscada</td>
<td>0.13</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Ajos</td>
<td>0.25</td>
<td>0.25</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>Sólidos de jarabe de maíz</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocoto</td>
<td></td>
<td></td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>Mejorana en polvo</td>
<td></td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Fosfatos</td>
<td></td>
<td></td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Eritorbato de sodio</td>
<td></td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>4.51</td>
<td>4.25</td>
<td>2.40</td>
<td>2.92</td>
</tr>
</tbody>
</table>

Fuentes: Peñafiel, 2002
En el Cuadro 7 se presentan las principales formulaciones de cabanossi, según diversos autores. Se puede apreciar, que la masa principal está conformada por carne (vacuno, cerdo o industrial) y grasa de cerdo; así como de aditivos, siendo los principales: sal, comino, pimienta, ajos, pimentón y nuez moscada.

La formulación recomendada por Kutas (2007) utiliza exclusivamente carne de cerdo e insumos tales como: pimienta negra, nuez moscada y ajos; así como, polvo de praga para curar la carne, dextrosa y sólidos de jarabe de maíz como sustrato para los microorganismos que otorgan color a la carne.

Schiffner et al. (1996), señala que en la elaboración de cabanossi se utiliza carne de cerdo y carne de res y aditivos como: nuez moscada para otorgarle sabor y aroma, así como la utilización de fosfatos para ligar la masa.

Algunas empresas peruanas recomiendan, adicionalmente a los insumos usados por Kutas (2007), al rocoto y comino; así como, Eritorbato de Sodio, el cual acelera y controla las reacciones del curado, siendo adicionalmente un antioxidante.

Viscofan (2000), recomienda la adición de pimentón picante para otorgarle pungencia y pimentón dulce para darle color. Asimismo, utiliza 90 ppm de nitritos sobre la masa, llegando a 180 ppm cuando el peso es reducido al 50%, después que el producto ha sido deshidratado.

2.6.4 Procesos de elaboración

La literatura menciona que hay dos formas de presentación del Cabanossi, la primera está conformada exclusivamente de masa gruesa (si pasó por la moledora) y la segunda de una mezcla de masa gruesa y de masa fina (si pasó por la moledora y el cutter). La primera es reportada por Kutas (2007) y Schiffner et al. (1996), siendo la más utilizada en el Perú y, la segunda es recomendada por Viscofan (2000).

Según Tyburcy et al. (2010), el cabanossi es una salchicha deshidratada y ahumada en caliente (la temperatura interna del producto debe llegar a 70° C), se compone de carne de cerdo de molienda gruesa, la cual se embute en tripas de oveja (alrededor de 20 mm de diámetro), junto con las especias. El contenido de humedad deseado debe ser por debajo de 60% y se obtiene secándolo con aire a 14 – 18 ° C por 3 – 5 días.

Schiffner et al. (1996) señalan que el cabanossi se puede dejar madurar y a las 4 semanas ya se puede considerar un embutido duro de larga duración. Para la elaboración de kabanosy recomienda que las carnes congeladas sean molidas, mezcladas y embutidas en tripas de ovino o colágeno (funda sintética que permite el ahumado), se ahúman en caliente a 70ºC durante aproximadamente 25 minutos y se dejan secar.

La pérdida de peso durante la deshidratación está relacionada con la temperatura y humedad relativa, la velocidad del aire y el tiempo que permanezca en el interior del ambiente de almacenamiento, el grado de molienda de la mezcla (Del Nobile et al., 2009), el ancho y tipo de material de las tripas y la cantidad de grasa en la formulación (Del Nobile et al., 2009).

Cuadro 8. Parámetros del proceso para la elaboración de Cabanossi

<table>
<thead>
<tr>
<th>Fase</th>
<th>Tiempo</th>
<th>ºC</th>
<th>Humedad Relativa %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coloreado</td>
<td>20´</td>
<td>55</td>
<td>100</td>
</tr>
<tr>
<td>Secado</td>
<td>20´</td>
<td>60</td>
<td>Baja</td>
</tr>
<tr>
<td>Ahumado</td>
<td>15´</td>
<td>72</td>
<td>85</td>
</tr>
<tr>
<td>Cocción</td>
<td>20´</td>
<td>75</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: Viscofan (2000)

2.6.4.1 Curado

El proceso de curado se logra añadiendo un número de agentes de curado a la carne; cada ingrediente tiene características únicas y desempeña un papel importante en el proceso. Los
principales ingredientes comprenden sal (NaCl), azúcar, nitratos y/o nitritos, ascorbato sódico y, a menudo, también fosfatos (Ordoñez et al., 1998).

a) Papel del cloruro sódico

Es el componente básico de todas las mezclas de curado. Potencia el sabor, actúa deshidratando y modificando la presión osmótica, lo que inhibe el crecimiento microbiano y, por tanto, limita la alteración bacteriana. Un 5% de NaCl inhibe completamente el desarrollo de bacterias anaerobias, mientras que no tiene efecto manifiesto en los aerobios (micrococos) y anaerobios facultativos (estafilococos). Al 10% de NaCl, el crecimiento de la mayor parte de las bacterias se inhibe, aunque algunas especies halotolerantes pueden crecer incluso en medios que contengan hasta un 15% de sal. En salmueras el crecimiento bacteriano ocurre principalmente en la interface carne-salmuera (Price et al., 1994).

La sal juega un papel importante en la textura de los productos cárnicos picados, debido a que facilita la solubilización de las proteínas miofibrilares y su falta produce que la solubilización sea incompleta produciendo pérdida de textura en productos cocidos (Cheftel et al., 1992).

Se conoce que la sal influye no solo en el sabor sino también en el aroma de los alimentos, actuando como prooxidante de los lípidos en los sistemas cárnicos. El desarrollo del aroma se debe a la interacción de la sal con los tejidos magros y/o grasos produciendo compuestos aromáticos deseables los cuales se deben a la combinación de varios componentes como: aminoácidos libres, ácidos grasos libres, peróxidos, ácidos orgánicos solubles en agua, etc (Girard, 1988).

b) Papel del azúcar

El azúcar es un conservador que retarda el crecimiento bacteriano e imparte un agradable aroma a la carne curada, esto debido a que desarrollan bacterias productoras de aroma. Sin embargo, el azúcar puede contribuir a que se desarrollen reacciones de pardeamiento (Price et al., 1994).
La adición de pequeñas cantidades de glucosa a los embutidos fermentados es una práctica normal debido a que crea condiciones reductoras que ayudan a que las carnes curadas no desarrollen aromas a oxidado. Asimismo, las condiciones de reducción influyen en el color de la carne curada porque estabilizan el Fe²⁺ favoreciendo el desarrollo de pigmentos cárnicos deseados (Cheftel et al., 1992).

El azúcar sirve como fuente energética para algunos microorganismos deseados (lactobacilos) que producen ácido, consiguiéndose un pH que acompaña a las condiciones reductoras favoreciendo la formación de pigmentos cárnicos deseados. Las condiciones reductoras también juegan un papel importante en la reducción de nitratos a nitritos y de estos a óxido nítrico, que es la sustancia activa que reacciona con los pigmentos de la carne (Cheftel et al., 1992).

c) Papel de los nitratos y nitritos

Los nitratos se usan debido a que estabilizan el color de la carne curada. Habitualmente, se utilizan nitrato sódico y potásico. Sin embargo, se ha observado que los nitritos fijan más rápidamente el color. (Fehlhaber, 1995). Dentro de los efectos de los nitratos y nitritos tenemos:

- Estabilizan el color
- Contribuyen a desarrollar el aromacaracterístico de la carne curada
- Inhiben el crecimiento de bacterias, especialmente el *Cl. botulinum*
- Retardan el desarrollo de rancidez

La acción antimicrobiana de los nitratos es fundamentalmente contra las bacterias anaerobias, siendo para muchos microorganismos aerobios una fuente de nitrógeno. El nitrato, por sí mismo, no tiene una acción inhibitora del crecimiento bacteriano, la acción antimicrobiana se debe a los nitritos originados a partir de este y, concretamente, al acidonitroso y a los óxidos que se generan a partir de él. El nitrito formado actúa solo sobre las bacterias y no afecta al crecimiento de
Los nitratos y nitritos se usan para contrarrestar los efectos adversos de la sal en el color produciendo pigmentos estables. Los nitritos requieren un paso menos en la estabilización del color dado que los nitratos deben primero reducirse a nitritos (Bazan, 2008).

Los nitratos se transforman en nitritos por la acción de microorganismos, y es probable que éstos participen de una forma importante en el aroma característico que se produce. El aroma de los productos cárnicos curados y crudos es diferente cuando son tratados con calor. Evidentemente, a elevadas temperaturas se producen aromas diferentes. El aroma de curado se debe a las reacciones de los constituyentes cárnicos con los nitritos y óxido nítrico. Las sustancias que se han identificado son alcoholes, aldehídos, inosina, hipoxantina y en particular compuestos azufrados. La cantidad de nitritos que se necesitan para producir el aroma de curado típico en un producto cárnico es 20-40 mg/kg (Työppönen et al., 2003).

Los nitratos y/o nitritos ejercen un marcado efecto inhibidor en las bacterias incluso en pequeñas cantidades. El crecimiento de ciertas especies de microorganismos causantes de toxiiinfecciones (Cl botulinum, Salmonella, Staphylococcus) se ve inhibido a concentraciones de nitritos de 80-150 mg/kg. El efecto conservador de los nitritos debe tenerse en cuenta junto con otros factores como la actividad de agua (aw), el pH, la temperatura, el potencial redox, etc (Fehlhaber, 1995).
La adición de nitratos o de nitritos a los alimentos proteicos puede dar lugar a la aparición de nitrosaminas. Al ser muchas de ellas sospechosas de actuar como carcinógenos para el hombre, se recomienda reducir la adición de estos aditivos a la cantidad mínima posible. Ciertos compuestos de los alimentos inactivan estas reacciones y otros las catalizan. Los principales inhibidores son el ácido ascóbico o eritóbico y el tocoferol (vitamina E), los cuales se añaden durante el curado (Von, 2000).

d) Papel del ascorbato sódico y/o isoascorbatos

El ácido ascóbico o vitamina C está prácticamente ausente en los productos cárnicos. El ácido ascóbico y el isoascóbico o ácido eritóbico, al igual que sus respectivas sales, se usan normalmente como coadyuvantes del curado. Su acción parece radicar en su capacidad de reducir la metamioglobina a mioglobina y en potenciar la producción de óxido nítrico a partir de nitritos. Ambos mecanismos ayudan al desarrollo y estabilización del color de la carne (Hui, 2001). Los ascorbatos o isoascorbatos ayudan a detener las pérdidas de color en las carnes curadas; se cree que se debe a que mantienen las condiciones reductoras en la superficie de las carnes expuestas y a que convierten una alta proporción de pigmentos cárnicos en nitroso-hemocromógeno (estable) durante el proceso de cocción (Sebranek et al., 1994). Las cantidades que normalmente se añaden son de 0,03 a 0,05% o 0,05-0,07% de ácido ascóbico o de ascorbato sódico, respectivamente. El ácido ascóbico actúa más rápidamente que los ascorbatos. El ácido ascóbico es un agente reductor poderoso, dando NO a partir de NO\textsubscript{2} (Ordoñez et al., 1998).

e) Papel de los fosfatos

Los fosfatos potencian la capacidad de retención de agua y mejoran el color y aroma de los productos cárnicos. La mejora de la capacidad de retención de agua se explica como resultado de un pH superior que aumenta el espacio alrededor de las proteínas donde se aloja el agua. (Möhler, 1982). Los fosfatos más usados han sido los polifosfatos, y cuando se han combinado con otros
compuestos alcalinos, se ha observado que actúan sinérgicamente aumentando los rendimientos del jamón u otros productos cárnicos (Price et al., 1994). Parece ser que sólo los fosfatos alcalinos son efectivos por mejorar la retención de la salmuera y aumentar los rendimientos finales de los productos cárnicos curados. La mejora en los rendimientos es más efectiva al aumentar la temperatura del procesado. La mejora del color y aroma parece deberse a la acción antioxidante de los fosfatos y probablemente está relacionada con la formación de complejos con metales pesados presentes en las sales de curado (Girard, 1991).

2.6.4.1.1 Métodos de curado

En lo que respecta a forma de aplicación de la sal, se distingue básicamente entre curado en seco y curado húmedo (Fehlhaber, 1995).

a. Curado en seco

Las piezas de carne se frotan con sal curante y se dejan reposar en un recipiente perforado a una temperatura de 6-8°C, esta penetra en el tejido, a la vez que gotea una solución acuosa de sal y proteínas (Ordoñez et al., 1998).

b. Curado húmedo

La carne se sumerge en la solución de sal curante o salmuera de curado. El proceso de curado puede producir defectos en el producto por mala penetración de la sal curante por ello se han desarrollado diversos métodos de curado húmedo (Ordoñez et al., 1998).

Dentro de ellos tenemos el curado por inyección, en el cual se inyecta la salmuera en el músculo o en las arterias. En la inyección vascular, la salmuera curante se inyecta en las arterias principales, debidamente desbridadas, de la pieza a curar (v.gr., jamón); entonces, la salmuera se distribuye por la pieza a través del sistema circulatorio vascular. La inyección en el músculo se hace con una jeringa que tiene varias agujas que distribuyen la salmuera curante uniformemente
(Tapiador, 1993). Una vez practicada la inyección, se suelen introducir las piezas en salmuera de la misma concentración o someterlas a curado en seco (Girard, 1991).

c. **En el curado al vacío**

Los pedazos de carne son introducidos en una caldera de vacío herméticamente cerrada. Se aspira el aire residual y con ello se reduce la presión atmosférica normal. De esta manera, la salmuera curante penetra en la carne, esto debido a que se relajan las uniones de las fibras musculares. Las piezas de carne permanecen en la caldera de vacío por 12 horas como mínimo a una presión de 0,6-0,7 atm. Luego los pedazos de carne pueden someterse a un curado húmedo o seco (Ordoñez et al., 1998).

d. **En el curado por ultrasonido**

La salmuera curante se introduce en el seno de la carne en pocos minutos por efecto de las ondas sonoras. Las sustancias curantes se distribuyen muy bien y el tiempo de curado se reduce en un 20-30 % (Fehlhaber, 1995).

2.6.4.1.2 Procesos físicos y químicos del curado

El tratamiento de la carne con sal curante de nitrito desarrolla tres efectos principales: formación de un color rojo resistente al calor, formación del aroma típico de curado y tiene una acción antimicrobiana. Estos efectos del curado son resultado de la reacción del nitrito con los componentes de la carne (Honikel, 2007). Para que se produzca el pigmento de curado, el nitrito debe reducirse a óxido de nitrógeno (NO), el cual se fija a la mioglobina, generándose así la nitroso-mioglobina (NOMb), que es el pigmento de curado (Girard, 1991).

Como agentes reductores actúan diversas sustancias. El sistema redox cisteína-cistina conduce sobre todo a la formación del óxido nitroso. El empleo de aditivos reductores acentúa
notablemente el enrojecimiento. Utilizando ácido ascórbico (500 mg/kg de carne) el 90 % de la mioglobina presente se transforma en nitroso-mioglobina (Chasco et al., 1996).

Los productos cárnicos curados exhiben en comparación con los artículos salazonados aroma y sabor muy agradable, que en conjunto constituyen el buqué a curado, que se hace más marcado tras reaccionar el nitrito con los componentes de la carne. La actividad lipásica de la flora de curado (micrococos) contribuye a liberar carbonilos a partir de la grasa, reforzando así el aroma (Fehlhaber, 1995).

2.6.4.1.3 Riesgos sanitarios del curado

Si se añaden grandes cantidades de nitrito como aditivo a los alimentos y se ingiere con los artículos curados, puede presentarse una intoxicación por nitrito (Bazan, 2008). Después de ser absorbido en el tracto digestivo, el nitrito ocasiona el bloqueo de la respiración, por oxidación de la hemoglobina (Fehlhaber, 1995).

Estudios indican que el nitrito y nitrato pueden contribuir a través de reacciones secundarias a la formación de sustancias nocivas para la salud, como las N-nitrosaminas, que tienen fuerte acción cancerígena (Schuck et al., 1973). Las aminas secundarias formadas durante el almacenamiento del producto, pueden generar N-nitrosaminas en presencia de nitrito. Del gran número de N-nitrosaminas con posible acción cancerígena sólo se han evidenciado dos en productos cárnicos curados la N-nitroso-dimetilamina que se forma mediante nitrificación de la creatina, y la N-nitroso-pirrolidina que se produce a partir de prolina en productos tratados por el calor. Asimismo, se recomienda no usar sal curante si los productos van a someterse a temperaturas por encima de 160°C (Fehlhaber, 1995).
Con objeto de atenuar el riesgo de formación de nitrosaminas, se ha reducido la cantidad de nitrito presente en la sal curante. Sin embargo, las investigaciones han demostrado que, si el curado se realiza correctamente, no debe temerse la formación de nitrosaminas (Ordoñez et al., 1998).

2.6.5 Principales etapas en los procesos de elaboración de Cabanossi

Las principales etapas en los procesos de elaboración de Cabanossi son: la maduración y el ahumado - cocción.

2.6.5.1 Maduración

Schiffner et al. (1996), menciona que en la etapa de maduración es donde realmente se originan las características típicas del producto. La maduración tiene dos fases. En la primera fase hay predominio de las actividades reproductoras y metabólicas de las bacterias, esta fase concluye con la diferenciación bacteriana y se caracteriza por la aparición de numerosos ácidos grasos volátiles, sobre todo de ácido pirúvico y ácido láctico. Durante la segunda fase hay una lenta pero constante disminución del número de bacterias, se producen los procesos de descomposición y transformación, siendo lo más relevante la descomposición de los ácidos grasos producidos en la primera fase, formándose el típico aroma del producto. Al mismo tiempo se produce una intensa descomposición de las proteínas y del ácido láctico formado a partir de la glucosa.

Schiffner et al. (1996), recomienda que en la primera fase los embutidos se cuelguen para realizar un presecado. Indica que debe de haber una Humedad relativa del 95% (aproximadamente) y una velocidad del aire cercana a cero.

Un embutido crudo, al inicio tiene en promedio 5 x 100,000 gérmenes por gramo de masa. Al añadir la mezcla de sales curantes, a la masa del embutido crudo, se reduce el valor de la
actividad de agua (Aw) a 0.96 inhibiendo el crecimiento de las bacterias y se facilita el crecimiento de las bacterias productoras de ácido láctico (Bazan, 2008). Para esto último se debe tener en cuenta:

a. **Regulación de la temperatura**

La temperatura ideal para las bacterias ácido lácticas es de 22-25°C. A menos de 18°C es casi imposible su desarrollo; por el contrario se desarrollan bacterias no benéficas (Rust, 1994).

b. **Disponibilidad de nutrientes**

Las bacterias ácido lácticas necesitan agua, proteínas, vitaminas e hidratos de carbono (azúcar). Estos componentes se encuentran en la masa, sin embargo, el único azúcar existente, en cantidades relativamente reducidas, es el glucógeno (azúcar muscular). Todos los tipos de bacterias necesitan azúcar, por lo que existe una gran competencia (Rust, 1994).

c. **Microclima**

En la primera fase de maduración es muy importante conseguir el microclima óptimo, la humedad debe estar a 95% aproximadamente y la velocidad del aire debe ser de aproximadamente cero (Kutas, 2007).

d. **Cultivos iniciadores**

Son cultivos de bacterias lácticas que se agregan a la masa. Estas bacterias transforman la glucosa en ácido láctico, disminuyendo el valor del pH desde 5.6 - 5.7 hasta aproximadamente 5.0, a este pH no pueden sobrevivir las bacterias de la putrefacción. En buenas condiciones, la diferenciación de bacterias se puede realizar entre las 24 a 36 horas. El descenso del valor del pH durante la primera fase de maduración produce la desnaturalización y gelificación de las proteínas así como la liberación del agua ligada (Pinto et al., 2002).
2.6.5.2 Ahumado – cocción

El ahumado es una forma de conservación que reduce el contenido en humedad del alimento y proporciona protección contra las bacterias, debido a los cambios químicos que tienen lugar dentro de la carne salada, como resultado de la combinación de la salmuera con el efecto del humo de madera sobre ella (Walker, 1995).

El ahumado proporciona a los productos cárnicos: aromatización, coloración, conservación (Weinacker et al., 1990), desarrollo del sabor, creación de nuevos productos y protección contra la oxidación (Mikami et al., 1999). Por lo general, prolonga la capacidad de conservación por efecto de la deshidratación. El ahumado se lleva a cabo aplicando humo genuino o humo líquido y sirve para mejorar la calidad culinaria. (Fehlhaber, 1995).

Para la producción de humo se utiliza por lo general madera de árboles de hoja caduca, como haya, roble, aliso y arce, aunque también caoba y nogal. El uso de maderas blandas (coníferas como pino y abetos) y plantas aromáticas pueden desarrollar sabores y olores poco agradables o demasiados intensos, por eso, las maderas más recomendables son las duras como roble, haya, cedro, ciprés, etc. (Ordoñez et al., 1998).

La pirolisis o descomposición térmica de los componentes de la madera (celulosa, hemicelulosa y lignina) se produce por combustión lenta de la madera (en forma de serrín o virutas) generando humo. (Ordoñez et al., 1998). A temperaturas superiores a 400°C existe el riesgo de producir benzopirenos los que son cancerígenos (Fehlhaber, 1995).

El humo natural consta de dos componentes las partículas diversas y una fracción gaseosa. Las diminutas partículas se distribuyen uniformemente en el componente gaseoso. Se considera que existen en el humo más de 320 compuestos. Los componentes del humo implicados en el desarrollo del bouquet de los productos cárnicos ahumados son los carbonilos y los fenoles; estos últimos
Poseen, además, una actividad como antioxidante y contribuyen al retraso del enranciamiento de la grasa (Ordoñez et al., 1998).

El sabor, color y aroma característicos es debido a que los ácidos, alcoholes, carbonilos y fenoles condensan en la superficie de los productos ahumados (Ordoñez et al., 1998). El color castaño de los productos ahumados se produce debido a la reacción química entre los componentes aldehídos del humo y las proteínas, asimismo la velocidad con que se origina el color castaño depende de la concentración de dichas sustancias y de la temperaturas (Fehlhaber, 1995).

La capacidad de conservación de los alimentos es consecuencia de la acción bacteriostática y bactericida de los componentes del humo (formaldehído, creosota, fenoles, guayacol, ácidos acético y fórmico), pero también de la desecación que se produce durante el ahumado, sobre todo en el ahumado en caliente (Price et al., 1976).

2.6.5.2.1 Métodos de ahumado

El procedimiento de ahumado más utilizado es la exposición directa de las piezas a la acción del humo (Walker, 1995). Dentro de los métodos de ahumado tenemos:

a. **Ahumado frío**

Se emplea para ahumar embutidos crudos, artículos curados madurados, tocino, embutido cocido, arenques salados y salmón. Se realiza a una temperatura que varía entre 12 a 25°C, con una humedad relativa que varía entre el 50 y el 90 % (Ordoñez et al., 1998).

En el ahumado en frío se distinguen dos modalidades:

a) el ahumado largo el cual se realiza en jamones y embutidos crudos sometidos a prolongada maduración. Se lleva a cabo en cámaras tradicionales, con una duración hasta
de 6 semanas o más. Las temperaturas de ahumado se hallan cercanas a los 12°C (Guerrero et al., 1990).

b) El ahumado corto, se aplica preferentemente a artículos curados, embutidos curados y embutidos cocidos. Se realiza en instalaciones climatizadas, donde se tiene un control de la temperatura y humedad. La duración del ahumado oscila entre unas 6 horas y algunos días con alta concentración de humo. Las temperaturas de ahumado de embutidos curados es cercana a los 25°C (Fehlhaber, 1995).

b. **Ahumado templado**

Es una alternativa al ahumado en frío. La temperatura fluctúa entre 25-50°C y la humedad relativa está entre 50-80%.

Dentro del ahumado templado tenemos el ahumado-sudado, aquí la temperatura y la humedad son superiores al ahumado templado. Por eso es más rápido el ahumado y se realiza a productos ahumados en frío, se obtienen productos con un sabor suave a ahumado (Fehlhaber, 1995).

c. **Ahumado caliente**

Se someten a ahumado caliente embutidos escaldados. Para este tipo de ahumado los productos primero se desecan y enrojecen sin aplicación de humo; se deben eliminar sobre todo las gotas de agua, y graduar la tasa de humedad existente en la envoltura de los embutidos en un nivel óptimo para el ahumado. El ahumado propiamente dicho se realiza entre 50 y 85°C. El tiempo de ahumado oscila entre 5 y 100 minutos. A continuación se calienta el embutido escaldado a temperaturas comprendidas entre 70 y 80°C. Por razones higiénicas, en el proceso deben alcanzarse temperaturas internas como mínimo de 70°C (Walker, 1995).
Por otro lado el calor ocasiona el calentamiento, el enrojecimiento (reacción con las sustancias curantes), la consistencia al corte por coagulación de las proteínas, y la capacidad de conservación por destrucción de buena parte de las formas microbianas vegetativas. El ahumado implica ya un completo calentamiento (Fehlhaber, 1995).

d. **Humo líquido**

Esta sustancia está indicada para ser utilizada en productos cárnicos y embutidos, aves, pescado, condimentos, elaboración de quesos, salsas, sopas, platos preparados, «snacks», productos instantáneos, etc. Además de la aplicación externa, en los embutidos existe la posibilidad de la agregación directa durante el picado, empleo de la cúter o entremezclado, así como en otras etapas adecuadas de la elaboración (Potthast, 1996).

El humo líquido se elabora mediante destilación y subsiguiente condensación de compuestos volátiles. El proceso de fabricación tiene varias operaciones, como fraccionado, centrifugado, filtrado y/o depósito, que tienen por objeto eliminar o reducir grupos de sustancias indeseables, en particular hidrocarburos aromáticos policíclicos (HAP) o fracciones de alquitrán (Essien, 2005).

Los condensados de humo más utilizados en productos cárnicos se presentan en diferentes formas:

- **Líquidas**: disueltos en agua, aceite o disolventes orgánicos.
- **Solidas**: en estado polvoriento adsorbido en sal, especias, glucosa y gomas (2-5%) básicamente.

Según (Ordoñez et al., 1998) Su utilización es muy sencilla y rápida, presentando la ventaja adicional de disminuir la utilización de cámaras de ahumado. Se pueden utilizar de diferentes formas:
- Incorporación directa a la mezcla de los ingredientes, como en los productos picados (salchichas, salami).
- Inmersión de los productos a ahumar en una solución de aromas de humo (5-60s). deja un gusto a ahumado muy ligero y se usa básicamente para piezas pequeñas (salchichas, paletillas).
- Pulverización o atomización sobre la superfcie del producto cárnnico. El sabor aparece tambiém de forma superficial. Se usa en salchichas y jamones.
- Mezcla con la salmuera en dosis variables (0.25-1%) e inyección en el producto. Confiere un sabor homogéneo y repetitivo. Se usa mucho en jamones.
- Utilización de tripas con recubrimiento de humo líquido, para lo cual la tripa se recubre en su interior con humo líquido y luego se procede al llenado. Se utiliza para productos cárnnicos de gran calibre.

Cualquiera de estos métodos presenta el inconveniente de ser incompleto en cuanto al efecto buscado; lo más frecuente es combinarlos para conseguir las características organolépticas deseadas.

El tratamiento superficial con humo líquido (inmersión, pulverización o recubrimiento de las tripas) tiene como principal ventaja el no necesitar condiciones especiales ni cámaras de ahumado. Puede utilizarse tanto en tripas permeables como impermeables al agua y al aire. Solamente se debe procurar que estas tripas no se mojen antes del llenado, dado que el humo líquido se desprende de la tripa con el agua (Ordoñez et al., 1998).

El tratamiento de productos cárnnicos con humo líquido requiere un proceso térmico posterior para que se desarrollen las reacciones químicas accesorias para la formación del color. Por ello, el tratamiento con humo líquido debe ser contemplado como una alternativa o complemento del ahumado tradicional en caliente (Ordoñez et al., 1998).
En los productos cárnicos que van a ser ahumados en frío casi no se puede usar el humo líquido, ya que no se produce la evaporación y el humo líquido adsorbido se condensa en forma de gotitas, pudiendo originar fallas en el color (Ordoñez et al., 1998).

2.6.5.2.2 Riesgos del ahumado

Como muchos otros procesos tecnológicos, el ahumado de productos cárnicos y otros alimentos ha sido blanco del fuego cruzado de la crítica. Las razones de esto son esencialmente la contaminación del aire por las emisiones de las instalaciones de ahumado y la contaminación de los productos cárnicos ahumados con sustancias del humo peligrosas para la salud, sobre todo el benzopireno, de reconocida acción cancerígena (Carballo et al., 2001).

La tasa de benzopireno presente en el humo aumenta linealmente a medida que se incrementa la temperatura entre 400 y 1000°C. Mientras que los condensados de humo obtenidos con una temperatura de combustión sin llama de 400°C contenían 5μg de benzopirenos/100 g de serrín, cuando la temperatura ascendía a 1000°C se determinó la presencia de 20μg de benzopireno/100 g de serrín. Esto supone un incremento del benzopireno en cuatro veces para una diferencia térmica de 600°C. Según esto, el mantenimiento de una temperatura de combustión sin llama no muy superior a 400°C contribuiría a reducir el riesgo sanitario (Essien, 2005).

2.6.6 Característica sensorial

En el cabanossi, las características sensorial son importantes para la comercialización de cualquier producto alimenticio. El consumidor, es exigente en este aspecto antes que de otras propiedades que indiquen calidad (Chambers et al., 1993). Dentro de estas características se evalúa el color y la textura.
Color

La percepción del color juega un rol muy importante en la evaluación de la carne por el consumidor (Lanari *et al.*, 1995) ya que se asocian ciertos colores con la frescura del producto y con la descomposición del mismo.

El color de la carne está dado por la presencia de mioglobina en sus diversos estados. La medición del color es subjetiva, ya que depende de la apreciación del observador. Por ello, se usan equipos que dan una valoración objetiva al color evitando de esta manera el error del observador.

La percepción del color de un producto es la respuesta del sistema visual de un observador real al estímulo producido por la energía radiante que procede de la capacidad de reflexión por la materia de las diferentes radiaciones luminosas del espectro visible. La comisión internacional del color CIE define el color percibido como el atributo visual que se compone de una combinación cualquiera de contenidos cromáticos y acromáticos. Este color no depende sólo del color físico del estímulo sino también de su tamaño, forma, estructura y estímulos que le rodean, aparte del estado del sistema visual del observador y de su experiencia en situaciones de observación semejante o relacionada.

Los atributos son:

a. La claridad, según la CIE es la luminosidad del estímulo juzgada en relación a la luminosidad de otro estímulo que aparece como blanco o transparente. Se halla correlacionada con el estado físico de la carne, la cinética en la instalación del *rigor mortis*, al pH final del músculo y sus correspondientes efectos sobre la estructura de las fibras musculares.

b. El tono, Para la CIE, sería el atributo de la sensación visual según el cual el estímulo aparece similar a uno de los colores percibidos como rojo, amarillo, verde o azul, o a ciertas proporciones de dos de ellos. En el caso del color del músculo, el estado químico del pigmento
influido por la oxidación de la mioglobina, determinará el tono del color. Esta correlacionado con los factores postmortem.

c. El croma, es el atributo que permite valorar el color de un área que aparece más o menos coloreada, dando la sensación de colores vivos y apagados. Para la CIE, el croma es el colorido del estímulo juzgado en proporción a la luminosidad de otro estímulo que aparece como blanco. Se le relaciona con los valores ante mortem. La cantidad de pigmento en el músculo determinara la saturación del color. En la grasa será depósito de pigmentos procedentes de la alimentación como xantofilas, carotenos, etc.

Los aparatos de medida de color suelen estar determinados por las coordenadas L^*, a^*, b^* del espacio CIELAB donde:

1. L^*: es el valor de la claridad ya definido (0= negro; 100= blanco).
2. Coordenada a^*: representa la oposición visual rojo-verde ($a^*>0$ rojo; $a^*<0$ verde).
3. Coordenada b^*: representa la oposición visual amarillo-azul ($b^*>0$ amarillo; $b^*<0$ azul).

Textura

La caracterización de la textura en un alimento se basa en un conjunto de medidas (Roudot, 2004). Actualmente el método de compresión de análisis del perfil de textura (TPA) es el método instrumentalmás usado para determinar propiedades de textura en alimentos, el cual imita las condiciones de compresión durante la masticación (Herrero et al., 2007).

El método TPA ha sido empleado en evaluaciones de productos cárnicos, como en salchichas fermentadas deshidratadas, para determinar la calidad final del producto o seleccionar el mejor ingrediente funcional (Herrero et al., 2007).

Este método pretende encontrar el mejor modelo de la masticación para proporcionar cierto número de parámetros característicos de la acción de la mandíbula sobre el alimento (Roudot, 2004).
En la TPA se obtiene con el texturómetro 8 parámetros:

- Fracturabilidad, fuerza necesaria para la primera ruptura en la primera mordida.
- Dureza o firmeza, mayor valor obtenido en la primera compresión.
- Adherencia, es el trabajo necesario para despegar el producto de placa de compresión.
- Cohesión, es la fuerza que ejercen los enlaces internos del producto.
- Elasticidad, es la distancia (altura) que recupera el producto desde el final de la primera mordida y el inicio de la segunda.
- Carácter frágil, se evalúa a partir de la forma de los picos. Los alimentos frágiles nunca son adhesivos.
- Carácter masticatorio, es energía requerida para masticar un alimento sólido hasta que esté listo para ser tragado. Simula el periodo de tiempo requerido para masticar una muestra de alimento a una velocidad constante para reducir su consistencia y así pueda ser tragado.
- Carácter gomoso, es la energía requerida para desintegrar un alimento semisólido hasta que esté listo para ser tragado. El alimento es colocado en la boca y movido entre la lengua y el paladar, el grado de gomosidad se evalúa por la cantidad de movimiento requerido antes de que el alimento se desintegre.

La mayoría de consumidores consideran a la dureza como el factor más importante que determina la calidad de la carne. Tal es así que cuando se habla de carne, frecuentemente se utilizan indistintamente términos textura y dureza, los que no son sinónimos. La textura es una propiedad sensorial, mientras la dureza es un atributo de textura (Chrystall, 1994). La dureza de la carne está determinada directamente por las propiedades de las estructuras proteicas contráctiles, del citoesqueleto y conjuntivas, las cuales son muy variables dependiendo de la genética, edad,
nutrición y factores de manejo pre y post mortem. Además, todos los factores que influyen en la cantidad de grasa intramuscular afectan a su vez a la terneza o resistencia al corte de la carne de ovino y de otras especies animales. Wood et al. (2003) indicaron que los lípidos neutros situados en los adipocitos que están ubicados en el perimisio podrían tener un efecto físico al separar los haces de fibras musculares, resultando en un efecto de ablandamiento de la carne al “abrir” la estructura del músculo. Finalmente, se ha de tener en cuenta que el método de cocción o calentamiento de la carne afecta a la dureza.

2.6.7 Composición química

pH

El pH de la carne tiene gran importancia ya que influye sobre las características de color, terneza, sabor, capacidad de retención de agua y conservación, afectando por lo tanto a las propiedades organolépticas de la carne, calidad higiénica y su aptitud tecnológica para la elaboración de productos cárnicos (Alarcón et al., 2006).

Tras la muerte del animal cesa el aporte sanguíneo de oxígeno y de nutrientes al músculo, que para mantenir su metabolismo post mortem debe utilizar sus reservas de energía, sintetizando ATP con el fin de mantener activos los mecanismos enzimáticos. La demanda de ATP es mayor que lo generado y conforme se reducen los niveles de ATP se genera simultáneamente fosfato inorgánico, que a su vez estimula la degradación de glucógeno a ácido láctico mediante la glucólisis anaerobia (Garido et al., 2005). La formación de ácido láctico y de otros ácidos orgánicos va a provocar un descenso del pH muscular que continúa hasta que se agotan las reservas de glucógeno o hasta que se inactivan las enzimas que rigen el metabolismo muscular (Lawrie, 1998).

En bastantes casos la degradación del glucógeno cesa antes que las reservas se agoten, esto debido a que el propio descenso en el pH muscular llega a inactivar las enzimas glucolíticas,
conservando el músculo hasta un 20% de la cantidad inicial (Ordoñez et al., 1998). El descenso del pH acerca a las proteínas de la carne a su punto isoeléctrico (5,1-5,2) disminuyendo su capacidad de retención de agua, también produce un efecto de desnaturalización más intenso cuanto menor es el pH y mayor es la temperatura de la carne.

Además, la baja disponibilidad de ATP impide que se mantenga la integridad estructural de las membranas y proteínas, lo que provoca fenómenos adicionales de desnaturalización. La desnaturalización proteica es responsable de una reducción en la cantidad de agua retenida, afectando el color, la textura y el grado de exudación de la carne (Sellier, 1988).

El pH muscular en los animales vivos se sitúa en 7,08 y 7,30. Existen parámetros como el sexo, la edad y el peso al sacrificio que no tienen efecto sobre el pH final de la carne, mientras que la raza, el sistema de aturdimiento y el tiempo de maduración de la carne sí parecen influir en los valores finales del pH (Silva et al., 1999). No obstante, algunos autores indican diferencias según el sexo en los valores y evolución del pH debido a un distinto potencial glicolítico (Larzul et al., 1997), aunque este efecto se mantiene en controversia.

El descenso del pH dependerá del tipo de músculo y de la actividad a la que este es sometido antes del sacrificio. En condiciones normales, los músculos de contracción rápida alcanzan valores de 5,5, mientras que en los de contracción lenta el pH se acerca más a 6,0 (Ordoñez et al., 1998). Así mismo los músculos que desarrollan más actividad antes del sacrificio son los que presentan un pH postmortem más elevado (Tarrant, 1980). La duración del ayuno previo al sacrificio también es determinante en la evolución y valor final del pH (Rosenvold et al., 2003). Cuando se obtienen valores de pH por encima de los normales se podría deducir que el glucógeno muscular estaría en cantidades inferiores a las normales, aunque algunos músculos pueden contener hasta 1% de glucógeno residual y presentar un pH final por encima de 6. La depleción del glucógeno dependerá de todos aquellos factores que causan estrés crónico físico y
fisiológico de los animales (Sanz et al., 1996). En este caso se presenta un defecto en la carne asociado al rigor mortis conocido como carne DFD (carne dura, firme y oscura).

En animales que sufren estrés agudo en el momento del sacrificio, como se indicó anteriormente, la temperatura post mortem de la carne es elevada y se acelera la glucolisis, provocando un rápido descenso del pH mientras la canal está aún caliente lo que resulta en una gran desnaturalización de las proteínas miofibrilares (Ramírez, 2003). Además, el valor de pH suele ser más bajo de lo normal, así, conforme disminuye el pH, se va aproximando al punto isoelectrónico de las proteínas miofibrilares (5,1), las repulsiones electrostáticas entre proteínas disminuyen y la cantidad de agua situada entre las mismas es cada vez menor. En definitiva, se obtiene una carne pálida, blanda (deformable) y exudativa (PSE).

Actividad de agua (Aw)

La Aw es un parámetro del agua que describe el grado de energía del agua en los alimentos. Esta medida tiene importancia debido a que determina el límite menor de agua disponible para el crecimiento microbiano (Fontana et al., 2004). Este parámetro se define mediante la relación de la presión del vapor de agua del sustrato del alimento con respecto a la presión de agua pura a la misma temperatura $\text{Aw} = \frac{p}{p_0}$, donde p es la presión del vapor de la solución y p_0 es la presión de vapor del solvente (generalmente agua) (Jay, 2000).
III. MATERIALES Y MÉTODOS

3.1 Lugar de realización

El trabajo se realizó en el Laboratorio de Salud Pública y Salud Ambiental de la Universidad Nacional Mayor de San Marcos (elaboración del producto). El análisis de las muestras se realizó en el Laboratorios de Análisis Físico-Químico de Alimentos, Investigación e Instrumentación de la Facultad de Industrias Alimentarias de la Universidad Nacional Agraria La Molina (Análisis físicoquímicos).

3.2 Materia prima e insumos

3.2.1 Materia prima

- Carne de Ovino
- Grasa de Ovino
- Quinua
- Harina de Cebada
3.2.2 Insumos

- Sal común (cloruro de sodio)
- Azúcar
- Sal de cura
- Rocoto
- Aceite
- Pimentón
- Ajos Triturados
- Pimienta
- Tripas naturales de ovino (18-20mm)
- Comino

3.3 Materiales y equipos

3.3.1 Materiales

- Cuchillos.
- Tabla de picar.
- Recipientes de plástico y/o acero inoxidable.

3.3.2 Equipos

- Cronómetro.
- Colorímetro Minolta® CR-400.
- Balanza Analítica, marca Ohaus, Nº 602207 850013, Italia.
- Potenciómetro, marca Schott Gerate, Nº 64029096, Alemania.
- Analizador de Textura QTS 25 (Brookfield® CNS Farnell, Middelboro, MA, USA).
- Aqua Lab Water Activity Meter-Decagon Devices Inc ©
- Cámara de refrigeración.
- Estufas de desecación: P-Selecta modelo Digitronic, Kowell modelo D1-I; P-Selecta de aire forzado DRYGLASS modelo 2000381 y marca MEMMERT.
- Mufla Heterotec modelo 10-PR/300 serie 8B; homo mufla modelo 2804, marca NABER.
- Digestor de Proteínas Digestion System 12, modelo 1009, marca TECATOR.
- Destilador de Proteínas Kjeltec System, modelo 1002, marca TECATOR.
- Extractor de Grasa o Aparato de Goldfisch, marca LABCONCO.
- Boquillas para embutir
- Ahumador artesanal.
- Termómetro
- Estufa

3.4 Métodos de análisis y evaluación

3.4.2 Análisis de textura

Se realizó con texturómetro QTS 25 (Brookfield® CNS Farnell, Middelboro, MA, USA). Los parámetros determinados en el ensayo fueron la fuerza máxima de corte y la energía total necesaria para romper la muestra totalmente (Dureza, gomosidad e índice de masticabilidad)

3.4.3 Análisis del color

Se realizó con colorímetro Minolta CR 400 método recomendado por Tyburcy (2010). El color del cabanossi fue expresado como L*(luminosidad), a*(tendencia al rojo), b*(tendencia al amarillo). Se realizaron medidas por cada formulación.

3.4.4 Análisis de pH
Se realizó por el método de análisis de productos cárnicos que cita la NTP-ISO 2917 (1998) de INDECOPI, titulada "Carne y Productos Cárnicos. Medición de pH. Método de referencia”.

3.4.5 Análisis de actividad de agua

La medida de la actividad de agua se realizó mediante el equipo AquaLab Water Activity Meter-DecagonDevicesInc® Con una solución Standard de a_w de 0,760 ± 0,003 (NaCl 6,0 M en H$_2$O). Dos gramos de la muestra de cabanossi previamente molida fueron depositados en la cubeta de plástico del equipo inmediatamente se realizaron dos mediciones calculando luego el promedio de ambas medidas, las medidas se efectuaron a temperatura ambiente (~ 20 ºC).

3.4.6 Análisis sensorial de aceptación

Para la formulación optimizada se realizó la prueba de aceptación. Para la selección de los 50 panelistas se aplicó previamente una cartilla para determinar si era consumidor frecuente (Anexo 14), los criterios de selección fueron 2: ser consumidores habituales de cabanossi y estar comprendidos en el rango de edades de 18 a 30 años (Carpenter et al., 2002). Para la evaluación sensorial se realizó la prueba de aceptación, los panelistas seleccionados usaron una cartilla de evaluación que contenía una escala hedónica de nueve puntos (Peryam et al., 1957) (Anexo 15)

3.4.7 Análisis Químicos nutricionales

Las muestras para el análisis químico proximal fueron picadas y colocadas en una capsula de porcelana 40± 0.1g. La capsula se colocó en una estufa marca Memmert a 60°C durante 24 horas para el secado. Una vez que se hicieron pesados dos días consecutivos sin variación de peso se determinó que la muestra estaba seca. Pasadas las 24 h se procedió a moler la muestra utilizando una moledora. A partir de esta muestra se procedió a realizar los análisis respectivos. La determinación de humedad, cenizas, extracto etéreo y proteína se realizó según los métodos recomendados por la Asociación Oficial de Analistas Químicos (AOAC) (1990).
3.5 Metodología experimental

3.5.1 Diseño de estudio

En el estudio se desarrolló y evaluó un embutido ahumado a partir de carne de oveja adulta, que incluyó quinua y harina de cebada, para lo cual se obtuvo la formulación óptima utilizando el software Design-Expert® 8 en las diferentes etapas del estudio, tal como se muestra en la Figura 6.
3.5.2 Formulaciones preliminares

Selección de las muestras por medio del software Desing-Expert® 8, que nos permite ajustes óptimos del proceso para lograr el máximo rendimiento para así obtener la formulación ideal del producto. Este software simplifica el uso de los Métodos de superficie de respuesta (RSM).
De acuerdo a esto, se determinó que el número de formulaciones preliminares a evaluar serían 16, tal como se muestra en la Figura 8.

Figura 7. Parámetros para Diseño de las Formulaciones a Evaluar

Figura 8. Formulaciones a evaluar
3.5.3 Flujo de operaciones

La elaboración de cabanossi de ovino se realizó considerando el flujo de operaciones mostrado en la Figura 9.

a. Trozado: la canal de ovinofue trozada en piezas, se le extrajo la grasa subcutánea y la carne fue cortada en cubos de aproximadamente 2,5 cm.

b. Curado: La carne de ovinofue curada con sal (20 g/kg) y nitritos (190 ppm) con el objetivo de favorecer la coloración y conservación del producto (Price et al., 1976). Se realizó el método curado en seco, manteniendo la carne trozada a 4 ºC durante 24 horas.

c. Molido: Se realizó con el objetivo es reducir el tamaño y aumentar así la superficie de contacto de la carne (Girard, 1991). Se usó un moledor de carne con una criba de 3 mm.

d. Mezclado: La carne curada, quinua, harina de cebada y los condimentos, fueron mezclados manualmente por 5 minutos. La formulación base de los condimentos fue adaptada de Mateo et al. (2011), tal como se muestra en el cuadro 9.

cuadro 9. Formulación base a utilizar en la elaboración de Cabanossi

<table>
<thead>
<tr>
<th>INGREDIENTE (kg/masa)</th>
<th>CANTIDAD (gramos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ají panca</td>
<td>20</td>
</tr>
<tr>
<td>Pimienta blanca</td>
<td>5</td>
</tr>
<tr>
<td>Comino</td>
<td>2</td>
</tr>
<tr>
<td>Ajo</td>
<td>10</td>
</tr>
<tr>
<td>Aceite vegetal</td>
<td>50</td>
</tr>
<tr>
<td>Rocoto molido</td>
<td>20</td>
</tr>
</tbody>
</table>

e. Embutido: La masa obtenida de las etapas anteriores se introdujo en tripas de ovino de calibre 18 a 20 mm, realizando presión durante el proceso con el fin de evitar introducir aire.

f. Secado: Durante esta etapa el embutido se mantuvo en refrigeración 4 ºC por 12 horas, con el fin de favorecer la eliminación de agua.

g. Ahumado: Se empleó carbón y aserrín (madera) como fuente calorífica y de humo. Se trabajó en 3 etapas:

1) Coloreado: Se ahumó a 50°C por 2 horas.

2) Secado/humado: Se efectuó a 60°C por 9 horas.

3) Ahumado en caliente: Se realizó a 80°C por 30 minutos.
3.6. Análisis de resultados

Los resultados obtenidos fueron analizados utilizando el software Desing-Expert® 8 y estadística descriptiva.
IV. RESULTADOS

4.1 Análisis de los cabanossi preliminares con carne de ovino, quinua y harina de cebada

4.1.1 Análisis de color

La luminosidad (L*) en todas las formulaciones fueron mayores a las marcas comerciales de cabanossi (A y B). En los valores de rojos (a*) la marca comercial de cabanossi A resultó tener una coloración más roja con un valor de 17.1±1, siendo las formulaciones N°6 (15.4±0.9) y N°9 (14.9±0.8) las que se acercan más al color de esta marca comercial. Los valores de amarillo (b*) fueron elevados en la totalidad de las formulaciones, las dos marcas comerciales tuvieron valores inferiores a todas las formulaciones preliminares del experimento.

4.1.2 Análisis de textura y Aw

En cuanto a la textura sobresale el cabanossi de la marca comercial A la cual tiene la dureza, la gomosidad y el índice de masticabilidad altos y una Aw baja. Mientras que en la Marca Comercial B, presenta valores menores que la marca comercial A. En las formulaciones del experimento la mayor parte de las formulaciones tienen valores menores a estas marcas comerciales. Asimismo, la mayoría de las formulaciones muestran una actividad de agua
ligeramente superior, a excepción de las formulaciones N° 6 y N° 9 que tienen un valor de actividad de agua similar a las Marcas Comerciales.

En el cuadro N° 10 se muestran los diversos resultados Análisis físico-químico, teniendo en cuenta que las formulaciones N° 10, 13, 16 y la formulación N°14 son de verificación del proceso de producción por lo que no aparecen en la evaluación de las muestras preliminares debido a que los resultados son iguales a la formulación N° 7 y a la formulación N°6.
<table>
<thead>
<tr>
<th>N° de Formulación</th>
<th>Carne %</th>
<th>Quinua %</th>
<th>Harina de cebada %</th>
<th>L* x±DE</th>
<th>a* x±DE</th>
<th>b* x±DE</th>
<th>Dureza x±DE</th>
<th>Gomosidad x±DE</th>
<th>Índice de masticabilidad x±DE</th>
<th>Aw x±DE</th>
<th>pH x±DE</th>
<th>Costo S/. 100g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56</td>
<td>40</td>
<td>4</td>
<td>40.9±0.8</td>
<td>12.6±0.8</td>
<td>12.3±0.3</td>
<td>2411.0±334.3</td>
<td>1432.5±345.9</td>
<td>920.5±310.4</td>
<td>0.9±0.0</td>
<td>5.89</td>
<td>1.56</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>30</td>
<td>3</td>
<td>43.3±0.6</td>
<td>12.3±0.8</td>
<td>11.6±0.5</td>
<td>2128.3±310.9</td>
<td>1258.8±218.9</td>
<td>788.9±164.5</td>
<td>0.9±0.0</td>
<td>5.88</td>
<td>1.54</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>40</td>
<td>2</td>
<td>40.5±0.1</td>
<td>12.1±1.8</td>
<td>10.8±0.2</td>
<td>3012.7±106.1</td>
<td>1722.2±124.3</td>
<td>1122.5±63.0</td>
<td>0.9±0.0</td>
<td>5.87</td>
<td>1.43</td>
</tr>
<tr>
<td>4</td>
<td>76</td>
<td>20</td>
<td>4</td>
<td>43.4±1.5</td>
<td>12.3±0.6</td>
<td>11.1±0.6</td>
<td>1857.0±555.0</td>
<td>1315.1±486.9</td>
<td>840.8±332.5</td>
<td>0.9±0.0</td>
<td>5.88</td>
<td>1.66</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>40</td>
<td>0</td>
<td>44.5±1.7</td>
<td>14.0±1.0</td>
<td>13.7±0.8</td>
<td>1639.3±207.4</td>
<td>955.0±112.0</td>
<td>554.1±77.1</td>
<td>0.9±0.0</td>
<td>5.89</td>
<td>1.30</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>42.5±0.3</td>
<td>15.4±0.9</td>
<td>9.7±1.1</td>
<td>5539.7±269.0</td>
<td>3752.1±167.9</td>
<td>2900.9±83.4</td>
<td>0.8±0.0</td>
<td>5.89</td>
<td>1.50</td>
</tr>
<tr>
<td>7</td>
<td>87</td>
<td>10</td>
<td>3</td>
<td>42.3±0.6</td>
<td>12.7±1.0</td>
<td>8.9±1.2</td>
<td>3122.3±794.8</td>
<td>1990.5±495.0</td>
<td>1358.7±391.7</td>
<td>0.9±0.0</td>
<td>5.88</td>
<td>1.65</td>
</tr>
<tr>
<td>8</td>
<td>82.67</td>
<td>13.33</td>
<td>4</td>
<td>43.5±0.9</td>
<td>12.0±0.7</td>
<td>6.1±0.4</td>
<td>5014.7±823.8</td>
<td>3455.1±561.8</td>
<td>2557.0±431.2</td>
<td>0.9±0.0</td>
<td>5.88</td>
<td>1.69</td>
</tr>
<tr>
<td>9</td>
<td>73.33</td>
<td>26.67</td>
<td>0</td>
<td>43.0±1.6</td>
<td>14.9±0.8</td>
<td>11.0±1.2</td>
<td>3275.3±484.3</td>
<td>2263.1±299.9</td>
<td>1650.7±263.6</td>
<td>0.8±0.0</td>
<td>5.87</td>
<td>1.37</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>20</td>
<td>0</td>
<td>42.2±1.8</td>
<td>14.6±0.8</td>
<td>11.7±1.0</td>
<td>2673.0±265.1</td>
<td>1764.1±93.7</td>
<td>1228.9±57.7</td>
<td>0.9±0.0</td>
<td>5.89</td>
<td>1.40</td>
</tr>
<tr>
<td>11</td>
<td>96</td>
<td>0</td>
<td>4</td>
<td>42.3±0.7</td>
<td>12.8±0.3</td>
<td>4.9±0.7</td>
<td>5850.7±405.9</td>
<td>4036.6±211.3</td>
<td>2961.7±209.9</td>
<td>0.9±0.0</td>
<td>5.89</td>
<td>1.76</td>
</tr>
<tr>
<td>12</td>
<td>58</td>
<td>40</td>
<td>2</td>
<td>44.8±0.9</td>
<td>12.4±1.1</td>
<td>8.2±0.4</td>
<td>1902.3±307.5</td>
<td>1172.7±194.5</td>
<td>705.1±149.9</td>
<td>0.9±0.0</td>
<td>5.89</td>
<td>1.43</td>
</tr>
<tr>
<td>13</td>
<td>BRAEDT</td>
<td></td>
<td></td>
<td>37.9±2.5</td>
<td>17.1±1.4</td>
<td>3.0±1.2</td>
<td>7986.3±277.1</td>
<td>4317.1±195.0</td>
<td>2415.9±172.8</td>
<td>0.8±0.0</td>
<td>5.88</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>OTTO KUNZ</td>
<td></td>
<td></td>
<td>31.4±0.1</td>
<td>6.5±0.1</td>
<td>-4.1±0.3</td>
<td>3007.3±135.8</td>
<td>1930.4±133.6</td>
<td>1291.1±109.3</td>
<td>0.8±0.0</td>
<td>5.88</td>
<td></td>
</tr>
</tbody>
</table>

Las formulaciones N° 10, 13, 16 y la formulación N°14 son de verificación del proceso de producción por lo que no aparecen en la evaluación de las muestras preliminares debido a que son iguales a la formulación N° 7 y a la formulación N°6.
4.2 Formulación preliminar ajustada a cabanossi comercial

En el Cuadro 11. Se muestra la formulación ajustada, a parámetros de cabanossi comercial, mediante el software DesignExpert ®8.

Cuadro 11. Resultados de análisis físico-químico de la formulación preliminar ajustada

<table>
<thead>
<tr>
<th>FORMULACIONES</th>
<th>TEXTURA</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne %</td>
<td>Quinua %</td>
<td>Harina de cebada %</td>
<td>L* ±DE</td>
<td>a* ±DE</td>
<td>b* ±DE</td>
<td>Dureza ±DE</td>
<td>Gomosidad ±DE</td>
<td>Índice de masticabilidad ±DE</td>
<td>Aw ±DE</td>
</tr>
<tr>
<td>75.844</td>
<td>20.156</td>
<td>4.0</td>
<td>43.3±1.0</td>
<td>12.3±0.7</td>
<td>11.3±0.7</td>
<td>1992.7±432.9</td>
<td>1286.9±352.9</td>
<td>814.9±248.5</td>
<td>0.9±0</td>
</tr>
</tbody>
</table>

4.3 Evaluación de aceptación del cabanossi con carne de ovino, quinua y harina de cebada

Los resultados del análisis sensorial de aceptación para cabanossi con carne de ovino, quinua y harina de cebada se muestran en el Cuadro 12. Todos los panelistas calificaron al producto dentro de la escala hedónica que va de Me gusta ligeramente (grado aceptación 6) hasta Me gusta muchísimo (grado de aceptación 9)

Cuadro 12. Análisis de datos del análisis sensorial

<table>
<thead>
<tr>
<th>Escala hedónica</th>
<th>Grado de aceptación</th>
<th>Frecuencia absoluta simple (n_i)</th>
<th>Frecuencia absoluta acumulada (N_i)</th>
<th>Frecuencia relativa simple (f_i)</th>
<th>Frecuencia relativa acumulada (%f_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me gusta muchísimo</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>0.22</td>
<td>22%</td>
</tr>
<tr>
<td>Me gusta mucho</td>
<td>8</td>
<td>14</td>
<td>25</td>
<td>0.28</td>
<td>28%</td>
</tr>
<tr>
<td>Me gusta moderadamente</td>
<td>7</td>
<td>21</td>
<td>46</td>
<td>0.42</td>
<td>42%</td>
</tr>
<tr>
<td>Me gusta ligeramente</td>
<td>6</td>
<td>4</td>
<td>50</td>
<td>0.08</td>
<td>8%</td>
</tr>
<tr>
<td>Ni me gusta ni me disgusta</td>
<td>5</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Me disgusta ligeramente</td>
<td>4</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Me disgusta moderadamente</td>
<td>3</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Me disgusta mucho</td>
<td>2</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Me disgusta muchísimo</td>
<td>1</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

80
4.4 Análisis Proximal

Los resultados del análisis químico proximal del cabanossi de carne de ovino, quinua y harina de cebada (formulación optima) se muestran en el Cuadro 13.

Cuadro 13. Resultados del análisis proximal del Cabanossi de ovino

<table>
<thead>
<tr>
<th></th>
<th>BASE HUMEDA %</th>
<th>BASE SECA %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad</td>
<td>43.81</td>
<td>56.19</td>
</tr>
<tr>
<td>Proteína</td>
<td>18.95</td>
<td>33.73</td>
</tr>
<tr>
<td>Estrato etéreo</td>
<td>19.10</td>
<td>34.00</td>
</tr>
<tr>
<td>Fibra cruda</td>
<td>1.29</td>
<td>2.29</td>
</tr>
<tr>
<td>Cenizas</td>
<td>5.38</td>
<td>9.58</td>
</tr>
<tr>
<td>Extracto no nitrogenado</td>
<td>11.47</td>
<td>20.40</td>
</tr>
</tbody>
</table>
V. DISCUSIÓN

En el Perú y Bolivia, el ovino es una especie que fue introducida con el fin de producir lana, sin embargo el volumen y precio de la fibra hace que sea una producción poco competitiva. Por lo cual una de las alternativas para obtener mejores ganancias en este tipo de producción sería el aprovechamiento de su carne mediante la transformación de esta, con el fin de obtener un mayor valor agregado.

Tradicionalmente el consumo de la carne de esta especie ha estado casi restringido (por costumbre) a los criadores y sus familias. En la actualidad es necesario orientar el consumo de esta carne, transformándola en productos que propicien una mayor demanda. Las directrices a seguir para una producción de embutidos alternativos, que responda a una creciente demanda, deben coincidir con la revalorización de la carne ovina.

En la actualidad el consumo de carne de ovino en el Perú es de manera tradicional, en platillos típicos de diferentes regiones del país (sopas, guisos, pachamanca, entre otros). En otros países como México, los productores están transformando industrialmente la carne de ovino en embutidos como el chorizo (Lozada, 1997).

La transformación de la carne en derivados cárnicos debe cumplir con algunas características tecnológicas y sensoriales que lo hagan agradable al consumidor y por lo tanto comercialmente aceptable. Por ello, este estudio se desarrolló un cabanossi cuyo consumo va en aumento. Durante su elaboración se evaluaron parámetros tecnológicos básicos como pH, textura, actividad de agua y color. Finalmente, el producto obtenido fue evaluado sensorialmente por consumidores frecuentes del embutido.
Dentro de los parámetros evaluados tenemos el color donde se determinó la luminosidad (L*), los índices de rojos (a*) y los índices de amarillo (b*). Así tenemos, que la luminosidad hallada en la totalidad de las formulaciones preliminares de cabanossi (40.5 ± 0.1 - 44.5 ± 1.7) tuvieron valores superiores a las marcas comerciales como Braedt (37.9±2.5) y Otto Kunz (31.4±0.1). Probablemente esto se deba al porcentaje de aceite y grasa de ovino usada en el estudio. En las formulaciones comerciales por lo general la materia prima “carne” está compuesta por 75% de carne propiamente dicha y 25% de grasa (Tyburcy et al., 2010). En el cabanossi desarrollado este porcentaje se modificó estando compuesto por 70% de carne y 30% de grasa. Asimismo, al adicionar al embutido machica y quinua se tuvo que añadir aceite con el fin de que el producto no salga seco. Tanto la grasa como el aceite se caracterizan por ser insumos que le dan brillantez al producto donde se les incluye. Así tenemos, que Pérez y colaboradores (1998) indican que aquellas materias primas con mayor contenido en grasa son las que presentan mayores valores de L*, lo que coincide con los valores encontrados de luminosidad en el chorizo del experimento.

Saavedra en el año 2013, realizó un experimento donde encontró valores inferiores de luminosidad (39,18 ± 0,27), que los reportados en este estudio. En este experimento el desarrollo de dos cabanossi con carne de alpaca. Realizo una formulación incluyendo quinua y otra formulación incluyendo papa. El autor no adicionó grasa animal en las formulaciones sino aceite vegetal en un 5%, si bien el valor de Luminosidad es inferior al determinado en el producto óptimo de carne ovino (43.3± 1) este valor no es muy distante, por lo que se podría inferir que el aceite es uno de insumos que ayuda a dar la brillantez o luminosidad en los productos desarrollados a base de carne. Lo que coincide con el valor de luminosidad hallado en el chorizo a base de ovino donde se usaron como insumos aceite y grasa.

En cuanto al índice de rojos (a*), se obtuvieron valores ligeramente inferiores en las formulaciones preliminares de chorizos a base de carne de ovino con respecto a las marcas comerciales. Esto probablemente se deba a la inclusión de insumos como la quinua y la machica los
cuales tienen un color blanco amarillento que al mezclarse con la carne de ovino estaría diluyendo el color rojo. Esto no sucede en las marcas comerciales ya que estos tienen como insumos solo carne, especias y grasa, no teniendo ningún insumo como los adicionados en este experimento que afecte el color del embutido.

A pesar de todo lo antes mencionado la diferencia de los índices de rojo (a*) fue mínima y esta posiblemente a la inclusión de insumos ricos en proteínas (quinua y harina de cebada) lo cual podría influir directamente en el color rojo (a*). Así también, se podría sugerir la influencia del proceso de curado en el color rojo (a*), ya que en productos curados y expuestos al calor se forman pigmentos como el nitrosohemocromogeno el cual le confiere un color rojo pálido o rosa

En cuanto al color amarillo (b*), la totalidad de las formulaciones preliminares del estudio tuvieron índices mayores (4 a 13) a las marcas comerciales (3 y -4.1). Los resultados de este estudio fueron similares a los obtenidos en el experimento realizado por Saavedra (2013), quien desarrolló un cabanossi a base de carne de alpaca con inclusión de quinua encontrando un índice de b* de 11.3. Los resultados encontrados en este estudio se podrían deber a la utilización de grasa de ovino adulto, la cual se caracterizó por tener un color amarillo a diferencia de la grasa de cerdo la cual tiene un color blanco cremoso y que es parte de los insumos de los cabanossi de las marcas comerciales. Asimismo, Saavedra incluye quinua la cual tiene un color blanco cremoso que también influye en la tonalidad de amarillos. En el caso del chorizo de ovino, se incluyen insumos como la quinua y la machica, lo que tienen un color blanco amarillento, que estaría ayudando a acentuar el índice de amarillos en el producto desarrollado y si a esto le sumamos la influencia del color de la grasa se podría justificar el valor de b* encontrado en el experimento.

Los índices elevados de b*, probablemente también se deban a la presencia de carotenoides amarillos como el beta caroteno y criptoxantina, los cuales se encuentran en los insumos de origen vegetal usados en el experimento como la harina de cebada, quinua y aji panca. Asimismo, Schaake et al (1993), indican que pigmentos como los carotenos y xantofilas presentes en las pasturas que
ingiere el animal, se depositan en la grasa y carne de los animales dando una coloración amarilla. Si se considera que la carne y la grasa de ovino fue de animales viejos, esto podría explicar el elevado índice de b* encontrado en este estudio, lo cual podría estar relacionado al tiempo de pastoreo de estos animales.

Otro parámetro que se ha evaluado es la textura la cual está conformada por varios parámetros texturales dentro de los que se han evaluado tenemos a la dureza, gomosidad e índice de masticabilidad.

En todas las formulaciones preliminares se encontraron valores inferiores a la marca comercial 1, con respecto a todos los parámetros texturales evaluados en el experimento. Se ha podido observar que a más inclusión de quinua y harina de cebada los niveles de textura disminuían. Esto coincide con los resultados obtenidos en un estudio por Saavedra (2013), cuando desarrollo un cabanossi de alpaca con inclusión de quinua, encontrando que la inclusión de quinua en embutidos, en diferentes porcentajes influye en los parámetros de textura, así tenemos que conforme aumenta el porcentaje de inclusión de quinua los valores de los parámetros de textura tienden a disminuir (excepto los valores de elasticidad). Los vegetales tienen una textura inferior a cualquier carne, por lo tanto al incluirla como parte de la mezcla del cabanossi esta estaría disminuyendo la textura inicial del producto, lo cual explicaría porque a mayor cantidad de quinua y harina de cebada menor valor de textura. García et al. (2002) indican que los carbohidratos y la fibra presente en las frutas y cereales que se incluyen en los embutidos, confieren al producto final características deseables de textura y retención de agua. Esto debido a que hacen más blando al producto.

Con respecto a la Aw, los valores obtenidos en el estudio fueron ligeramente superiores a las marcas comerciales, esto probablemente se deba a la inclusión de quinua cocinada en agua dentro de la masa a embutir. La quinua al ser hervida en agua capta parte de esta hidratándose e hinchando el grano de la misma por absorción de agua. Por lo tanto al añadir un insumo que tiene
0,600 de Aw hace que aumente este parámetro en el producto final. Lo cual puede influir en la textura final del producto.

En cuanto al valor de pH encontrado en el cabanossi con formulación optima (pH 5.89 ±0.07), este se encuentra dentro de los parámetros de pH de la carne de ovino (5,8 a 6,4). Asimismo, el pH de la quinua evaluado antes de la mezcla fue de 5.8. Por lo tanto el pH encontrado coincide con los valores de los insumos utilizados en la elaboración del cabanossi de carne de ovino al día 0 de elaboración. Si bien este valor no coincide con lo encontrado por Feldman et al. (1999) (pH de 5.56) esto probablemente se deba a que el utiliza solo carne y grasa en su embutido y no lo añade quinua, asimismo las maduración de la carne podría estar afectando el valor. Se sabe que la carne describe una curva descendente de pH, esta bajada depende de la cantidad de glucógeno que tiene la carne y por lo tanto del ácido láctico que se forma. Al agotarse la reserva de glucógeno el pH vuelve a subir. En el caso de la carne usada en este estudio, esta se usó dos días después del beneficio, probablemente se halla usado cuando el pH está volviendo a subir (Sanchez, 1999).

La formulación optima fue hallada mediante el análisis sensorial, obteniéndose resultados por encima de la media de la escala utilizada, esto nos sugiere que el cabanossi con la formulación optima (75.844% de carne, 20.156% de quinua y 4.0% de harina de cebada) es bien aceptado por los consumidores. Algo similar reporta Francois et al (2009), quienes elaboraron embutidos fermentados con hasta el 75% de carne de ovejas de descarte en la formulación. Esta aceptación del embutido se podría deber al enmascaramiento del aroma característico de la carne de ovino. Lo cual posiblemente se logró gracias al proceso del curado y ahumado. Asimismo, Nassu et al (2002) indica que el pH ácido en la fermentación láctica (curado) influye disminuyendo el sabor característico de la carne de ovino adulto. Asimismo, el ahumado, tiene componentes odoríferos más fuertes que el ácido 4-etiloctanoico de la grasa de la carne de ovino que logra enmascara el olor de esta.
En virtud de que no existe una norma oficial en Perú para el cabanossi con carne de ovino, se tomaron como base las disposiciones oficiales sobre las normas de calidad del cabanossi utilizados en Polonia (Official Journal of the European Union, 2009), donde se requiere que el producto contenga como máximo 60% de humedad, 15% como mínimo de proteína, 35.0% máximo de grasa y máximo de nitrito 0.0125%. Se puede apreciar que en cuanto a la norma se refiere, el cabanossi optimizado se encuentra dentro de sus especificaciones.

Según Esquivel (2005), la grasa en los embutidos favorece la retención de humedad, disminuye la exudación luego de la cocción y aporta las características de flavor. Lo cual coincide con los resultados del estudio, donde se trató de eliminar el flavor inicial de la carne de ovino poco apreciado por los consumidores.

Finalmente, el costo de elaboración del cabanossi con formulación optima fue de S/. 12.5/kg lo que equivale a un costo unitario de S/. 1.25. El precio inferior a marcas comerciales y la aceptación sensorial que obtuvo el producto nos podría indicar que puede ser comercializado en el mercado.
VI. CONCLUSIONES

1. La formulación óptima para la elaboración de un cabanossi a base de carne de ovino, quinua y harina de cebada contenía 75.844% de carne, 20.156% de quinua y 4.0% de harina de cebada.

2. El cabanossi elaborado a base de carne de oveja, quinua y harina de cebada, alcanzó un nivel de aceptación del 84%.

3. Se obtuvo un cabanossi de carne de ovino con inclusión de quinua y harina de cebada, aceptado sensorialmente, manteniéndose los niveles de proteína dentro de estándares comerciales con una factibilidad en costos de elaboración.

4. La composición proximal del cabanossi con formulación optima fue: 34.00% de grasa, 56.19% de humedad, 33.73% de proteína, 9.58% de cenizas y fibra cruda 2.29%. Encontrándose en los parámetros nutricionales de normas internacionales.
VI. RECOMENDACIONES

- Evaluar los niveles de proteínas (lisina y metionina) en el cabanossi de ovino con inclusión de quinua.

- Evaluar los cambios físicos-químicos y microbiológico del cabanossi de ovino con inclusión de quinua y harina de cebada durante el almacenamiento.
VII. LITERATURA CITADA

• **Braedt. 2014.** Catálogo de productos Braedt. [Internet], [20 enero 2014]. Disponible en: www.braedt.com

• **Cáceres A. 1999.** Las plantas medicinales en la agroindustria, manejo poscosecha, procesamiento, elaboración y comercialización de fitoterapicos. En: I Seminario Internacional. Colombia.

• **Cañeque V. y Sañudo C. 2005.** Estandarización de las metodologías para evaluar la calidad del producto (animal vivo, canal, carne y grasa) en los rumiantes. 1ª ed. Lima: INIA. 448 p.

• **Carballo BM, Carballo B, López de Torre G, Vicente A. 2001.** Tecnología de la carne y de los productos cárnicos. Mundi-Prens. 321 p

• **Centro de Estudios Agropecuarios. 2001.** Cria de ovinos. 10ª ed. México: Iberoamérica. 102 p.

• **Chambers E, Bowers J. 1993.** Consumer perception of sensory qualities in muscle foods. Food Technol. 47:116–120.

- **Garnica J. 1985.** Colesterol sérico en alpacas. En: Convención Internacional sobre Camélidos Sudamericanos. Cuzco

• **Herrero, A.M.; Ordoñez, J.A.; Romero de Avila; Herranz, B.; Hoz, L. de la; Cambero, M.I. 2007.** Breaking strength of dry fermented sausages and their correlation with profile analysis (TPA) and physico.chemical characteristics. Meat Science. 77: 331 – 338.

• **Honikel K. 2007.** The use and control of nitrate and nitrite for the processing of meat products. Meat Science 78: 68-76.

• **MINAG 2013.** [Internet], [10 diciembre 2013] Disponible en: http://quinua.pe/quinua-zonas-de-produccion/

• **MINAG, 2013.** Lima: Ministerio de Agricultura. [Internet], [12 agosto 2013]. Disponible en: www.minag.gob.pe/

• **Nassu RT, Gonçalves AG, Beserra FJ. 2002.** Efeito do teor de gordura nas características químicas e sensoriais de embutido fermentado de carne de caprinos. Pesquisa Agropecuária Brasileira. 37(8): 1169-1173

• **Norma Técnica peruana (NTP) 201.007. 1999.** Carne y productos cárnicos. Embutidos. Definiciones, clasificación y requisitos. 8 p.

• **Official Journal of the European Union. 2009.** LUXEMBOURG. Publication of an application pursuant to Article 8(2) of Council Regulation (EC) No 509/2006 on

- **Ortega F. 1990.** Evaluación nutricional en laboratorio de forraje hidropónico de cebada y maíz. México. p 56-76.

• **Planells EM, Llopis J, Rubio G, Aranda P y Venegas EC. 2001.** Estudio comparativo de la cantidad y la calidad de la grasa en distintas carnes de consumo habitual. 20(1) : 141-146

• **Potthast K. 1986.** Humo Liquido. Fleisch wirtschaft 1:27-33

• **Price JF. 1976.** Ciencia de la carne y de los productos cárnicos. Zaragoza: Acribia. 668 p

• **Reichert RD, Tatarynovich JT, Tyler RT. 1986.** Abrasive dehulling of quinoa (Chenopodium quinoa); Effect of saponin contents as determined by an adapted hemolytic assay. Cereal Chem. 63: 471-5.

• **Salvá, B. 2000.** Utilización de proteína de Soya y Carragenina en salchichas tipo Huacho con bajo tenor graso. Tesis de Magister Scientiae, Lima: Universidad Nacional Agraria La Molina. 150 p.

• **Sanchez G. 1999.** Ciencias básicas de la carne. 1ª ed. Colombia: Guadalupe Ltda. 185 p.

• **Viscofan. 2000.** Hoja Técnica Naturin. España

Anexo 1. Categorías carniceras de los ovinos

<table>
<thead>
<tr>
<th>Ovino</th>
<th>Características específicas</th>
<th>Carne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cordero</td>
<td>Hasta 3 meses de edad</td>
<td>Rosa clara, consistencia muy tierna, sin depósito adiposo.</td>
</tr>
<tr>
<td>Cordero de cebo</td>
<td>Canal de 15-22 kg, entre discretamente y muy musculados</td>
<td>Rosa o rojo claro, consistencia blanda, de fibras cortas, escaso o nulo depósito graso.</td>
</tr>
<tr>
<td>Oveja joven</td>
<td>Hasta 2 años de edad, sin dedicación a la reproducción</td>
<td>Roja clara, consistencia tierna, fibras cortas.</td>
</tr>
<tr>
<td>Carnero</td>
<td>Castrado como cordero joven, entre discretamente y muy musculados</td>
<td>Entre roja clara y roja oscura, consistencia elástica dura. depósito graso entre ausente y muy marcado.</td>
</tr>
<tr>
<td>Oveja madre</td>
<td>Oveja dedicada a la cría después del primer destete, discretamente musculada</td>
<td>Roja pálida, consistencia elástica. pH 5,8-6,4, depósito graso entre ausente y muy marcado.</td>
</tr>
<tr>
<td>Morueco</td>
<td>Cordero dedicado a la reproducción, entre discretamente y muy musculado</td>
<td>Roja oscura, consistencia elástica-dura, depósito graso entre discreto y muy marcado, olor sexual.</td>
</tr>
<tr>
<td>Morueco castrado (carnero)</td>
<td>Cordero después de ser utilizado como reproductor; es necesario castrarlo 12 semanas antes del sacrificio</td>
<td>Como la del morueco; sin olor sexual.</td>
</tr>
</tbody>
</table>

Fuente: Fehlhaber, 1995

Anexo 2. Porcentajes de los cortes de carne con respecto al peso de las canales de tres especies de abasto.

<table>
<thead>
<tr>
<th>Cortes de carne</th>
<th>Cerdo %</th>
<th>Vaca %</th>
<th>Ternera %</th>
<th>Ovino %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jamón y pierna</td>
<td>24,7</td>
<td>27,6</td>
<td>30,2</td>
<td>30,4</td>
</tr>
<tr>
<td>Tipo de carne</td>
<td>Espalda y redondo</td>
<td>Chuletas y lomo</td>
<td>Pescuezo o papada</td>
<td>Solomillo</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>12,1</td>
<td>13,7</td>
<td>13,5</td>
<td>17,4</td>
</tr>
<tr>
<td></td>
<td>12,3</td>
<td>5,5</td>
<td>11,5</td>
<td>12,7</td>
</tr>
<tr>
<td></td>
<td>6,7</td>
<td>9,5</td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4</td>
<td>2,2</td>
<td>9,0</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Fuente: Fehlhaber, 1995

Anexo 3. Composición proximal de la pierna de alpaca, cerdo y cordero.

<table>
<thead>
<tr>
<th></th>
<th>Alpaca*</th>
<th>Cerdo*</th>
<th>Cordero*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad</td>
<td>73,1</td>
<td>71,7</td>
<td>75,2</td>
</tr>
<tr>
<td>Proteína</td>
<td>24</td>
<td>19,4</td>
<td>20,3</td>
</tr>
<tr>
<td>Grasa</td>
<td>1,8</td>
<td>7,4</td>
<td>3,1</td>
</tr>
<tr>
<td>Ceniza</td>
<td>1</td>
<td>1,1</td>
<td>1</td>
</tr>
<tr>
<td>Carbohidratos</td>
<td>0,1</td>
<td>0,3</td>
<td>0,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de carne</th>
<th>mg / 100 g de carne muscular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpaca</td>
<td>56.49</td>
</tr>
<tr>
<td>Ovino criollo</td>
<td>88.12</td>
</tr>
</tbody>
</table>
Anexo 5. Valor Calórico de la carne de ovino y de otras especies de abasto.

<table>
<thead>
<tr>
<th>Carne</th>
<th>Nº de calorías</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne de llama</td>
<td>139.8</td>
</tr>
<tr>
<td>Carne de vaca grasa</td>
<td>306.9</td>
</tr>
<tr>
<td>Carne de vaca semi grasa</td>
<td>141.4</td>
</tr>
<tr>
<td>Carne de vaca magra</td>
<td>100.59</td>
</tr>
<tr>
<td>Carne de cerdo grasa</td>
<td>384.0</td>
</tr>
<tr>
<td>Carne de cerdo magra</td>
<td>137.6</td>
</tr>
<tr>
<td>Carne de cordero grasa</td>
<td>377.1</td>
</tr>
<tr>
<td>Carne de cordero semi grasa</td>
<td>123.3</td>
</tr>
<tr>
<td>Carne de cordero magra</td>
<td>100.9</td>
</tr>
<tr>
<td>Carne de liebre</td>
<td>103.7</td>
</tr>
<tr>
<td>Carne de pato</td>
<td>125.3</td>
</tr>
<tr>
<td>Carne de gallina</td>
<td>122.5</td>
</tr>
</tbody>
</table>

Fuente: Calle (1982)
Anexo 6. Composición en 100 g de quinua

<table>
<thead>
<tr>
<th>Nombre del alimento</th>
<th>Energía Kcal</th>
<th>Energía kJ</th>
<th>Agua g</th>
<th>Proteínas g</th>
<th>Grasa total g</th>
<th>Carbohidratos totales g</th>
<th>Carbohidratos disponibles g</th>
<th>Fibra cruda g</th>
<th>Fibra dietaria g</th>
<th>Ceniza g</th>
<th>Calcio mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinua de afrecho</td>
<td>338</td>
<td>1416</td>
<td>14.1</td>
<td>10.70</td>
<td>4.5</td>
<td>65.9</td>
<td>65.9</td>
<td>8.4</td>
<td>.</td>
<td>4.8</td>
<td>573</td>
</tr>
<tr>
<td>Quinua blanca (Junin)</td>
<td>343</td>
<td>1436</td>
<td>11.8</td>
<td>12.20</td>
<td>6.2</td>
<td>67.2</td>
<td>61.3</td>
<td>5.7</td>
<td>5.9</td>
<td>2.6</td>
<td>85</td>
</tr>
<tr>
<td>Quinua blanca (Puno)</td>
<td>346</td>
<td>1448</td>
<td>11.1</td>
<td>13.30</td>
<td>6.1</td>
<td>67.1</td>
<td>61.2</td>
<td>5.1</td>
<td>5.9</td>
<td>2.4</td>
<td>120</td>
</tr>
<tr>
<td>Quinua cocida</td>
<td>86</td>
<td>359</td>
<td>79.0</td>
<td>2.80</td>
<td>1.3</td>
<td>16.3</td>
<td>16.3</td>
<td>0.7</td>
<td>.</td>
<td>0.6</td>
<td>27</td>
</tr>
<tr>
<td>Quinua</td>
<td>343</td>
<td>1434</td>
<td>11.5</td>
<td>13.60</td>
<td>5.8</td>
<td>66.6</td>
<td>60.7</td>
<td>1.9</td>
<td>.</td>
<td>2.5</td>
<td>56</td>
</tr>
<tr>
<td>Quinua dulce, blanca (Junin)</td>
<td>352</td>
<td>1474</td>
<td>11.1</td>
<td>11.10</td>
<td>7.7</td>
<td>67.4</td>
<td>61.5</td>
<td>6.0</td>
<td>5.9</td>
<td>2.7</td>
<td>93</td>
</tr>
<tr>
<td>Quinua dulce, blanca (Puno)</td>
<td>340</td>
<td>1423</td>
<td>11.2</td>
<td>11.60</td>
<td>5.3</td>
<td>68.9</td>
<td>63.0</td>
<td>6.8</td>
<td>5.9</td>
<td>3.0</td>
<td>115</td>
</tr>
<tr>
<td>Quinua dulce, rosada (Junin)</td>
<td>352</td>
<td>1471</td>
<td>11.0</td>
<td>12.30</td>
<td>7.2</td>
<td>67.1</td>
<td>61.2</td>
<td>7.0</td>
<td>5.9</td>
<td>2.4</td>
<td>80</td>
</tr>
<tr>
<td>Quinua, harina de</td>
<td>341</td>
<td>1427</td>
<td>13.7</td>
<td>9.10</td>
<td>2.6</td>
<td>72.1</td>
<td>72.1</td>
<td>3.1</td>
<td>.</td>
<td>2.5</td>
<td>181</td>
</tr>
<tr>
<td>Quinua, hojuela de</td>
<td>374</td>
<td>1563</td>
<td>7.0</td>
<td>8.50</td>
<td>3.7</td>
<td>78.6</td>
<td>78.6</td>
<td>3.8</td>
<td>.</td>
<td>2.2</td>
<td>114</td>
</tr>
<tr>
<td>Quinua rosada (Puno)</td>
<td>348</td>
<td>1454</td>
<td>10.2</td>
<td>12.50</td>
<td>6.4</td>
<td>67.6</td>
<td>61.7</td>
<td>3.1</td>
<td>5.9</td>
<td>3.3</td>
<td>124</td>
</tr>
<tr>
<td>Quinua, sémola de</td>
<td>355</td>
<td>1485</td>
<td>12.6</td>
<td>19.50</td>
<td>10.7</td>
<td>53.8</td>
<td>47.9</td>
<td>8.3</td>
<td>5.9</td>
<td>3.4</td>
<td>76</td>
</tr>
<tr>
<td>Nombre del alimento</td>
<td>Fosforo mg</td>
<td>Zinc mg</td>
<td>Hierro mg</td>
<td>B caroteno equivalentes totales μg</td>
<td>Retinol μg</td>
<td>Vit. A equivalentes totales μg</td>
<td>Tiamina mg</td>
<td>Riboflabin mg</td>
<td>Niacina mg</td>
<td>Vitamina C mg</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>-------------</td>
<td>--------------------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Quinua de afrecho</td>
<td>342</td>
<td>.</td>
<td>4.00</td>
<td>.</td>
<td>0.00</td>
<td>.</td>
<td>0.21</td>
<td>0.22</td>
<td>1.00</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Quinua blanca (Junin)</td>
<td>155</td>
<td>3.30</td>
<td>4.20</td>
<td>.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>0.15</td>
<td>0.95</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Quinua blanca (Puno)</td>
<td>165</td>
<td>2.50</td>
<td>4.31</td>
<td>330.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.40</td>
<td>0.24</td>
<td>1.80</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Quinua cocida</td>
<td>61</td>
<td>.</td>
<td>1.60</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.01</td>
<td>0.00</td>
<td>0.26</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Quinua</td>
<td>242</td>
<td>3.30</td>
<td>7.50</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.48</td>
<td>0.03</td>
<td>1.40</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Quinua dulce, blanca (Junin)</td>
<td>355</td>
<td>3.30</td>
<td>4.30</td>
<td>.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.59</td>
<td>0.30</td>
<td>1.23</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>Quinua dulce, blanca (Puno)</td>
<td>226</td>
<td>3.30</td>
<td>5.30</td>
<td>.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.73</td>
<td>0.21</td>
<td>1.09</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>Quinua dulce, rosada (Junin)</td>
<td>344</td>
<td>3.30</td>
<td>4.30</td>
<td>.</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.30</td>
<td>1.23</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>Quinua, harina de</td>
<td>61</td>
<td>.</td>
<td>3.70</td>
<td>.</td>
<td>0.00</td>
<td>.</td>
<td>0.19</td>
<td>0.24</td>
<td>0.68</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Quinua, hojuela de</td>
<td>60</td>
<td>.</td>
<td>4.70</td>
<td>.</td>
<td>0.00</td>
<td>.</td>
<td>0.13</td>
<td>0.38</td>
<td>1.10</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Quinua rosada (Puno)</td>
<td>205</td>
<td>3.30</td>
<td>5.20</td>
<td>.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.24</td>
<td>0.25</td>
<td>1.60</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Quinua, sémola de</td>
<td>.</td>
<td>3.30</td>
<td>3.60</td>
<td>.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.21</td>
<td>0.25</td>
<td>1.84</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Instituto Nacional de Salud, 2009
Anexo 7. Producción anual de Quinua en toneladas – Perú

<table>
<thead>
<tr>
<th>Año</th>
<th>Producción (TM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>39398</td>
</tr>
<tr>
<td>2010</td>
<td>41093</td>
</tr>
<tr>
<td>2011</td>
<td>41182</td>
</tr>
<tr>
<td>2012</td>
<td>44207</td>
</tr>
</tbody>
</table>

Fuente: Ministerio de Agricultura Estadística Agraria Mensual, noviembre 2012

Anexo 8. Exportación Anual de la Quinua en toneladas – Perú

<table>
<thead>
<tr>
<th>Año</th>
<th>Exportación (TM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>2756.2</td>
</tr>
<tr>
<td>2010</td>
<td>4838.4</td>
</tr>
<tr>
<td>2011</td>
<td>7688.9</td>
</tr>
<tr>
<td>2012</td>
<td>9453.1</td>
</tr>
</tbody>
</table>

Fuente: Ministerio de Agricultura Estadística Agraria Mensual, noviembre 2012

Anexo 9. Producción de quinua por departamento (T.M)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>La Libertad</td>
<td>592</td>
<td>422</td>
<td>460</td>
<td>350</td>
<td>416</td>
<td>437</td>
<td>258</td>
<td>305</td>
<td>255</td>
<td>364</td>
</tr>
<tr>
<td>Áncash</td>
<td>438</td>
<td>416</td>
<td>414</td>
<td>381</td>
<td>456</td>
<td>328</td>
<td>379</td>
<td>180</td>
<td>234</td>
<td>199</td>
</tr>
<tr>
<td>Arequipa</td>
<td>387</td>
<td>358</td>
<td>278</td>
<td>286</td>
<td>284</td>
<td>269</td>
<td>257</td>
<td>268</td>
<td>281</td>
<td>264</td>
</tr>
<tr>
<td>Moquegua</td>
<td>18</td>
<td>16</td>
<td>24</td>
<td>23</td>
<td>24</td>
<td>21</td>
<td>16</td>
<td>30</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Cajamarca</td>
<td>79</td>
<td>109</td>
<td>119</td>
<td>114</td>
<td>104</td>
<td>77</td>
<td>131</td>
<td>141</td>
<td>151</td>
<td>195</td>
</tr>
<tr>
<td>Amazonas</td>
<td>24</td>
<td>31</td>
<td>41</td>
<td>42</td>
<td>32</td>
<td>30</td>
<td>23</td>
<td>13</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>Huanuco</td>
<td>304</td>
<td>355</td>
<td>249</td>
<td>375</td>
<td>306</td>
<td>281</td>
<td>323</td>
<td>305</td>
<td>295</td>
<td>296</td>
</tr>
<tr>
<td>Pasco</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junín</td>
<td>5125</td>
<td>2229</td>
<td>1,683</td>
<td>1,580</td>
<td>1,506</td>
<td>1,366</td>
<td>949</td>
<td>1,049</td>
<td>1,096</td>
<td>1,145</td>
</tr>
<tr>
<td>Huancaavelica</td>
<td>142</td>
<td>137</td>
<td>115</td>
<td>75</td>
<td>71</td>
<td>41</td>
<td>122</td>
<td>148</td>
<td>186</td>
<td>294</td>
</tr>
<tr>
<td>Ayacucho</td>
<td>1000</td>
<td>1444</td>
<td>1,144</td>
<td>752</td>
<td>1,070</td>
<td>914</td>
<td>1,031</td>
<td>1,368</td>
<td>1,165</td>
<td>1,721</td>
</tr>
<tr>
<td>Apurimac</td>
<td>1066</td>
<td>1094</td>
<td>1,021</td>
<td>1,036</td>
<td>613</td>
<td>518</td>
<td>585</td>
<td>894</td>
<td>934</td>
<td>902</td>
</tr>
<tr>
<td>Cusco</td>
<td>2607</td>
<td>1748</td>
<td>1,317</td>
<td>876</td>
<td>661</td>
<td>614</td>
<td>796</td>
<td>1,075</td>
<td>1,493</td>
<td>1,744</td>
</tr>
<tr>
<td>Puno</td>
<td>16649</td>
<td>20044</td>
<td>15,484</td>
<td>24,901</td>
<td>24,542</td>
<td>22,102</td>
<td>27,719</td>
<td>24,652</td>
<td>25,667</td>
<td>22,691</td>
</tr>
<tr>
<td>Total</td>
<td>28439</td>
<td>28411</td>
<td>22349</td>
<td>30791</td>
<td>30085</td>
<td>26997</td>
<td>32590</td>
<td>30428</td>
<td>31793</td>
<td>29852</td>
</tr>
</tbody>
</table>

Fuente: Ministerio de Agricultura, 2007
Anexo 10. Tabla de composición en 100 gramos de Cebada

<table>
<thead>
<tr>
<th>CEBADA</th>
<th>Energía Kcal</th>
<th>Energía kJ</th>
<th>Agua g</th>
<th>Proteínas g</th>
<th>Grasa total g</th>
<th>Carbohidratos totales g</th>
<th>Carbohidratos disponibles g</th>
<th>Fibra cruda g</th>
<th>Fibra dietaria g</th>
<th>Ceniza g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cebada con cascara</td>
<td>289</td>
<td>1210</td>
<td>9,7</td>
<td>8,4</td>
<td>2,0</td>
<td>77,5</td>
<td>60,2</td>
<td>7,3</td>
<td>17,3</td>
<td>2,4</td>
</tr>
<tr>
<td>Llunka de Cebada (moron americano)</td>
<td>252</td>
<td>1054</td>
<td>18,5</td>
<td>1,90</td>
<td>0,7</td>
<td>77,1</td>
<td>59,8</td>
<td>1,3</td>
<td>17,3</td>
<td>1,8</td>
</tr>
<tr>
<td>Machica de cebada</td>
<td>306</td>
<td>1279</td>
<td>10,0</td>
<td>8,60</td>
<td>0,7</td>
<td>77,4</td>
<td>67,3</td>
<td>6,6</td>
<td>10,1</td>
<td>3,3</td>
</tr>
<tr>
<td>Cebada para mate</td>
<td>328</td>
<td>1372</td>
<td>15,4</td>
<td>8,20</td>
<td>1,1</td>
<td>73,3</td>
<td>73,3</td>
<td>1,3</td>
<td>-</td>
<td>2,0</td>
</tr>
<tr>
<td>Harina integral de cebada tostada</td>
<td>282</td>
<td>1180</td>
<td>5,6</td>
<td>8,68</td>
<td>3,2</td>
<td>80,2</td>
<td>54,6</td>
<td>-</td>
<td>25,4</td>
<td>2,5</td>
</tr>
<tr>
<td>Cebada perlada cocida</td>
<td>60</td>
<td>251</td>
<td>81,0</td>
<td>1,00</td>
<td>0,1</td>
<td>17,7</td>
<td>13,9</td>
<td>0,1</td>
<td>3,8</td>
<td>0,2</td>
</tr>
<tr>
<td>Cebada perlada cruda</td>
<td>281</td>
<td>1174</td>
<td>13,3</td>
<td>5,30</td>
<td>0,6</td>
<td>79,8</td>
<td>64,2</td>
<td>0,5</td>
<td>15,6</td>
<td>1,0</td>
</tr>
<tr>
<td>Cebada tostada y molida</td>
<td>349</td>
<td>1460</td>
<td>9,9</td>
<td>7,70</td>
<td>0,8</td>
<td>79,7</td>
<td>79,7</td>
<td>5,3</td>
<td>-</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Fuente: Bejarano et al, 2002
Anexo 11. Tabla de composición de alimentos industrializados Contenido en 100 gramos de Embutido Crudo

<table>
<thead>
<tr>
<th>EMBUTIDOS CRUDOS</th>
<th>Descripción</th>
<th>Energ (Kcal)</th>
<th>Agua (g)</th>
<th>Prot (g)</th>
<th>Grasa (g)</th>
<th>CH2O (g)</th>
<th>Fibra (g)</th>
<th>Ceniza (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabanossi</td>
<td>Carne, grasa de porción y condimentos</td>
<td>227</td>
<td>62.4</td>
<td>18.0</td>
<td>16.7</td>
<td>0.0</td>
<td>0.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Chorizo</td>
<td>Carne, grasa de porción y condimentos</td>
<td>376</td>
<td>46.3</td>
<td>15.2</td>
<td>34.5</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Chorizo</td>
<td>Picante</td>
<td>391</td>
<td>41.9</td>
<td>14.8</td>
<td>34.1</td>
<td>5.0</td>
<td>0.0</td>
<td>4.2</td>
</tr>
<tr>
<td>Chorizo</td>
<td>Parrillero</td>
<td>314</td>
<td>52.5</td>
<td>16.1</td>
<td>27.2</td>
<td>0.0</td>
<td>0.0</td>
<td>4.2</td>
</tr>
<tr>
<td>Chorizo</td>
<td>ahumado</td>
<td>325</td>
<td>52.2</td>
<td>15.9</td>
<td>28.5</td>
<td>0.0</td>
<td>0.0</td>
<td>3.4</td>
</tr>
<tr>
<td>Salame</td>
<td>Carne y grasa de porcino</td>
<td>340</td>
<td>48.5</td>
<td>18.3</td>
<td>29.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.2</td>
</tr>
<tr>
<td>Salame</td>
<td>Tipo italiano, salado</td>
<td>466</td>
<td>26.5</td>
<td>26.1</td>
<td>39.3</td>
<td>0.0</td>
<td>0.0</td>
<td>8.1</td>
</tr>
<tr>
<td>Salchicha de Huacho</td>
<td>Carne y grasa porcina y/o bovina</td>
<td>464</td>
<td>35.0</td>
<td>10.3</td>
<td>43.3</td>
<td>4.1</td>
<td>0.0</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Fuente: Bejarano et al, 2002

Anexo 12. Contenido de colesterol en la sangre de Alpaca, llama, ovino y vacuno.

<table>
<thead>
<tr>
<th>Animal</th>
<th>mg colesterol / dl de sangre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpaca</td>
<td>20.43</td>
</tr>
<tr>
<td>Llama</td>
<td>16.00</td>
</tr>
<tr>
<td>Ovino</td>
<td>200.00</td>
</tr>
<tr>
<td>Vacunos</td>
<td>300.00</td>
</tr>
</tbody>
</table>

Fuente: Garnica (1988)
Anexo 13. Composición proximal de las carnes de principales especies de consumo (%)

<table>
<thead>
<tr>
<th>Especies</th>
<th>Humedad</th>
<th>Proteína</th>
<th>Grasa</th>
<th>Cenizas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llama carne fresca</td>
<td>69.17</td>
<td>24.82</td>
<td>3.69</td>
<td>1.41</td>
</tr>
<tr>
<td>Llama Charqui</td>
<td>28.81</td>
<td>57.24</td>
<td>7.48</td>
<td>3.32</td>
</tr>
<tr>
<td>Vacuno</td>
<td>72.72</td>
<td>21.01</td>
<td>4.84</td>
<td>0.91</td>
</tr>
<tr>
<td>Ovino</td>
<td>72.24</td>
<td>18.91</td>
<td>6.53</td>
<td>2.16</td>
</tr>
<tr>
<td>Porcino</td>
<td>59.18</td>
<td>19.37</td>
<td>20.06</td>
<td>0.79</td>
</tr>
<tr>
<td>Caprino</td>
<td>73.80</td>
<td>20.65</td>
<td>4.30</td>
<td>1.25</td>
</tr>
<tr>
<td>Gallina</td>
<td>72.04</td>
<td>21.87</td>
<td>3.76</td>
<td>1.31</td>
</tr>
<tr>
<td>Pato</td>
<td>70.08</td>
<td>19.60</td>
<td>7.85</td>
<td>1.47</td>
</tr>
<tr>
<td>Pavo</td>
<td>70.04</td>
<td>22.16</td>
<td>5.22</td>
<td>1.37</td>
</tr>
</tbody>
</table>

Fuente: Calle (1982)

Anexo 14. Cartilla de selección

<table>
<thead>
<tr>
<th>CARTILLA DE SELECCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre __________________________</td>
</tr>
<tr>
<td>¿Usted consume / ha consumido cabanossi?</td>
</tr>
<tr>
<td>¿Con qué frecuencia? __________________________</td>
</tr>
<tr>
<td>¿Qué le agrada del cabanossi?</td>
</tr>
</tbody>
</table>

😊 Gracias
Anexo 15. Cartilla de evaluación

CARTILLA DE EVALUACIÓN

Nombre: __
Fecha: ___

Por favor pruebe la muestra de Cabanossi y coloque el calificativo de acuerdo a la escala siguiente:

Gusto extremadamente
Gusto mucho
Gusto moderadamente
Gusto ligeramente
No gusto ni disgusto
Disgusto ligeramente
Disgusto moderadamente
Disgusto mucho
Disgusto extremadamente

Observaciones:
__
__

Anexo 16. Análisis proximal de la harina de cebada

<table>
<thead>
<tr>
<th>Harina de Cebada</th>
<th>Energía kcal</th>
<th>Agua g</th>
<th>Proteínas g</th>
<th>Grasa total g</th>
<th>Carbohidratos totales g</th>
<th>Cenizas g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>306</td>
<td>10,0</td>
<td>8,60</td>
<td>0,7</td>
<td>77,4</td>
<td>3,3</td>
</tr>
</tbody>
</table>