Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total, USNA-HNERM 2004

TESIS para optar al Título Profesional de: QUÍMICO FARMACÉUTICO
FERNANDO MOLINA CURASI
ASESOR: Q.F. BERTRAN SANTIAGO TRUJILLO
LIMA – PERÚ 2005
3.8.3. Incompatibilidad farmacéutica: .
3.8.4. Alteraciones fisiológicas: .
3.8.5. Osmolalidad elevada: .
3.8.7. Interacción farmacológica: .

3.9. Función del Químico farmacéutico en el equipo de soporte nutricional: .

IV. PARTE EXPERIMENTAL .

4.1. Localización: .

4.2.1. DETERMINACIÓN DE LA VISCOSIDAD: .
4.2.2. DETERMINACIÓN DE LA VELOCIDAD DE CAÍDA: .
4.2.3. DETERMINACIÓN DEL pH: .
4.2.4. DETERMINACIÓN DE LA OSMOLALIDAD: .
4.2.5. DETERMINACIÓN: UNIÓN DE FENITOÍNA A LAS PROTEÍNAS DEL NUTRIENTE ENTERAL TOTAL: .

4.3. Metodología: .
4.4. Recolección de Datos: .
4.5. Estudio In Vitro: .

V. RESULTADOS.

5.1. ANÁLISIS PRELIMINAR A LA DETERMINACIÓN FISICOQUÍMICA: .

VI. ANÁLISIS ESTADÍSTICO .

VII. DISCUSIÓN .

CONCLUSIONES .

RECOMENDACIONES .

BIBLIOGRAFÍA .

ANEXOS .
AGRADECIMIENTO

Mi agradecimiento eterno a Dios por la esperanza y paciencia que me da en los momentos difíciles.

A mis padres por el inmenso amor que me brindan, por su apoyo, comprensión y sacrificio para mi realización personal y profesional.

A los distinguidos miembros de Jurado:
Presidenta: Dra. Elizabeth Gonzales Loayza
Miembros: Q.F. Miguel Peña Altamirano
Mg. Carlos Bell Cortez
Mg. Gladis Delgado Pérez

Por el apoyo brindando, orientación y consejos recibidos que llevaron a buen terminó el presente trabajo.

Agradezco al Q.F Bertrán Santiago Trujillo que gracias a su dedicación y orientación durante el desarrollo del presente trabajo encamino de la mejor manera a su finalización.

A los distinguidos profesionales de la Unidad de Soporte Nutricional Metabólico y Artificial del Hospital Nacional Edgardo Rebagliati Martins:
Dr. Mario Ferreira Mújica Jefe de la USNA-HNERM
Lic. Luisa Guerrero Muñoz Jefa de Enfermería de la USNA-HNERM
Q.F. Maria Ocaña Química farmacéutica de la USNA-HNERM

Agradezco también al Dr. Roger Ramos Aparicio Jefe del Dpto. de Bioquímica del HNERM
Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total,
La recolección de los datos se realizó en 191 pacientes que recibían nutrición enteral de la unidad de soporte nutricional del Hospital Edgardo Rebagliati Martins durante Junio-Agosto del 2003. En este período se observó que el 28.80% de estos pacientes recibieron Osmolite HN (NET) y medicación por sonda nasogástrica. Para el estudio In Vitro de diseño prospectivo y experimental se seleccionaron 15 medicamentos de acuerdo a la frecuencia de administración y al potencial riesgo farmacológico. Se observó para cada parámetro, la relación lineal entre las variables al adicionar NET a las suspensiones. Se evidenció un incremento en el valor de la viscosidad para el caso de la suspensión de Ciprofloxacin de 21 y 26.1 cps debido a la formación de gránulos densos en presencia del NET. La osmolalidad mostró la relación lineal entre la suspensión con la adición del NET (F=8.15, µ:0.05) a los 12, 36 y 60 minutos de infusión; no alcanzando valores máximos de 200mOsm/Kg, obteniéndose como máximo valor el de la Ranitidina con 186mOsm/Kg a los 60 minutos. Se evidenció que la adición del NET a la suspensión del Omeprazol disminuyó su acidez de 5.89 a 6.83, para el caso de la suspensión de Fenitoína el cual en presencia del NET y el aspirado gástrico se observó una disminución de su alcalinidad de 10.07 a 7.92 (µ:0.05). El valor medio de los valores de velocidad de caída para las suspensiones fue de 6”28 y con la adición del NET de 12”01 (µ:0.05), evidenciándose la obstrucción de la sonda para el caso de la suspensión de Ranitidina. La adsorción de Fenitoína de las proteínas del NET mostró que el mayor grado de unión se produjo a la 1:30 h (91.33%) y 3:00 h (89.10%); siendo 68.62% Fenitoína recuperada durante las 4 horas de infusión (µ:0.05). De acuerdo al estudio realizado se concluye que no todas las formas farmacéuticas pueden administrarse con el nutriente enteral total por sonda nasogástrica por los cambios fisicoquímicos que la trituración genera.

Palabras claves: Nutrición enteral, sonda nasogástrica, suspensión, infusión.
Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total,
ABSTRACT

The collection of the data was made in 191 patients that received nutrition enteral of the unit of supports nutritional of Hospital Edgardo Rebagliati Martins during June-August of the 2003. In this period we were observed that 28.80% of these patients received Osmolite HN and medication for nasogastric tube. For the study In Vitro of prospective and experimental design, 15 medications were selected according to the administration frequency and to the potential pharmacological risk. We were observed for each parameter, that lineal relationship among the variables when adding NET to the suspensions. The increment was evidenced in the value of the viscosity for the case of the suspension of Ciprofloxacino from 21 to 26.1 cps due to the formation of dense granules in presence of the NET. The osmolalidad showed the lineal relationship among the suspension with the addition of the NET (F=8.15, μ:0.05) to the 12, 36 and 60 minutes of infusion; not reaching maximum values of 200mOsm/Kg, obtaining the maximum value the Ranitidina with 186mOsm/Kg to the 60 minutes. We were evidenced with the addition of the NET to the suspension of the Omeprazol diminished its acidity from 5.89 to 6.83, for the case of the suspension of Fenitoína which in presence of the NET and aspirated gastric observed a decrease of its alkalinity from 10.07 to 7.92 (μ:0.05). been evidenced the obstruction of the tube in the case of the suspension of Ranitidina. The adsorption of Fenitoína of the proteins of the NET evidenced that the biggest grade of union at the 1:30 h (91.33%) and 3:00 h (89.10%); being 68.62% Fenitoína recovered during the 4 hours of infusion (μ:0.05). According to the carried out study we concluded that not all the pharmaceutical forms can administers with the nutritious total enteral for nasogastric tube for the physiochemical changes that its trituration generates.

Key words: Nutrition enteral, nasogastric tube, suspension, infusion.
Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total,
I. INTRODUCCIÓN

Es bien conocido que la malnutrición calórico – proteica es una situación muy frecuente entre los pacientes hospitalizados en el Perú. Los pacientes con enfermedades gastrointestinales y hepáticas constituyen un colectivo en el que los déficit nutricionales son especialmente frecuentes, como consecuencia de que su enfermedad de base afecta a órganos involucrados en la incorporación y el metabolismo de nutrientes. Afortunadamente la tendencia en los últimos 20 años, es de prestar un gran interés por las fórmulas enterales completas, introduciéndose el concepto de que, en determinadas enfermedades, la nutrición enteral tiene capacidad terapéutica (“Farmacología Nutricional”) se está perfilando como uno de los campos con mayor futuro en la investigación nutricional. (32)

El avance de la tecnología ha permitido una opción más para que el clínico apoye al paciente en estado crítico en relación con su metabolismo y nutrición. Hay gran variedad de fórmulas enterales con sustratos para órganos y células específicas, de los cuales se comienzan a conocer sus implicancias en el metabolismo intermedio. El metabolismo se maneja mediante sustratos específicos en forma aislada o en combinación con alimentos naturales, creando fórmulas de alimentación enteral diseñadas de manera individual y específica para la enfermedad o enfermedades del sujeto críticamente enfermo. (11)

Las formas farmacéuticas más adecuadas para la administración de medicamentos por sonda nasogástrica son las formas líquidas orales: jarabes, gotas, ampollas bebibles, etc. Pero cuando no se dispone de éstos se suele adaptar la forma oral para su administración por sonda: triturando al comprimido, vaciando el contenido de la cápsula,
etc. Aunque las formas farmacéuticas sólidas están diseñadas para ser administradas intactas, se trata con frecuencia de comprimidos o cápsulas de liberación gástrica que pueden triturarse o vaciar su contenido; y dispersarse en agua. (1)

Otro de los problemas objeto de estudio son las alteraciones físico químicas: osmolalidad, pH, viscosidad, velocidad de caída o transito del medicamento por sonda nasogástrica y su adsorción a proteínas del nutriente enteral completo e isotónico (NET: Osmolite HN).
II. OBJETIVOS

2.1 OBJETIVO GENERAL

Determinar los cambios fisicoquímicos de las formas farmacéuticas sólidas que son administrados por sonda nasogástrica a pacientes con nutrición enteral total en un modelo “In Vitro”.

2.2 OBJETIVO ESPECÍFICO

Medir los parámetros fisicoquímicos de pH, viscosidad, osmolalidad de las formas farmacéuticas sólidas con el nutriente enteral completo e isotónico por su paso a través de la sonda nasogástrica.

Determinar la velocidad de caída o tránsito de las formas farmacéuticas sólidas por la sonda nasogástrica con el nutriente enteral completo e isotónico a su paso a través de la sonda Nasogástrica.

Determinar la adsorción de las formas farmacéuticas sólidas a las proteínas del nutriente enteral completo e isotónico por su paso a través de la sonda nasogástrica.
Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total,
III. GENERALIDADES

3.1. Evolución de la nutrición enteral:

La nutrición enteral empezó en el siglo pasado, observándose descripciones de su utilización siglos antes de Cristo con la alimentación rectal de vino, leche, caldo y brandy evolucionado a una terapia médica sofisticada para enfermedades críticas y crónicas. (13)

La nutrición enteral total comenzó su implantación como alternativa a la nutrición parenteral a partir de 1967 en los Estados Unidos gracias a Randall y en 1970 en Francia bajo el impulso de Levi.

En la última década, se han producido importantes avances tecnológicos en la elaboración de dietas y preparados comerciales para nutrición enteral así como en los sistemas de administración lo cual asegura una buena tolerancia incluso en pacientes con procesos digestivos de tal manera que en el momento actual la nutrición enteral cubre casi todas las indicaciones de la nutrición artificial. (10)

En 1950 Greenstein y Winitz desarrollaron las llamadas formulas elementales, en concentraciones y cantidades conocidas. Luego de su utilización en ratas, fueron aplicadas a voluntarios sanos durante 4 meses. Su utilización en pacientes quirúrgicos graves fue descrita en 1969 por Stefen y Randall con excelentes resultados, ya partir de
ahí suceden de forma ininterrumpida los estudios que demuestran su eficacia. (10)

Aunque inicialmente las formulaciones enterales no presentaban inconvenientes para su uso, la adopción de metodologías para su administración hizo necesarias las revisiones científicas con el fin de determinar los inconvenientes durante su aplicación, encontrándose que la mayoría de los problemas presentados se debían a la administración conjunta de medicamentos con las formulaciones enterales (5). No solo ocasionando problemas con el aporte de nutrientes, sino complicaciones de los medicamentos con el nutriente, ocasionando en algunos casos la pérdida del efecto terapéutico esperado; tal como lo demuestra numerosos científicos.

Luna Vega T, participó en la adopción de una nueva metodología para la administración de medicamentos por sonda nasogástrica en el servicio de Farmacia del Hospital “12 de Octubre” en Madrid (8).

En el Hospital de Santa Creu i Sant Pau en Barcelona, Gamez Lechuga M. demostró que era necesario monitorizar las características físico-químicas de los medicamentos antes de ser seleccionados para ser administrados por sonda nasogástrica (6).

En Febrero del 2000, en el Hospital de Amara en Guipúzcoa, el servicio de Farmacia elabora una Guía de administración de medicamentos por sonda nasogástrica, la cual aporta con precauciones y medidas a adoptar en caso de obstrucción de la misma (7).

En Marzo del 2001, Martínez Sanz, realizó un minucioso seguimiento en la administración de medicamentos por sonda nasogástrica y concluyó con la redacción de una Guía Practica de Administración de medicamentos por sonda nasogástrica (9).

La Dra. Ana María Bento Serrumbia, recopiló las interacciones de los medicamentos cuando son administrados por sonda nasogástrica con nutrientes enterales diseñando finalmente una guía de administración de medicamentos por sonda nasogástrica (23).

3.2. Nutrición Enteral Artificial:

La nutrición enteral artificial podemos considerala como una técnica relativamente moderna que tiene como objetivo administrar nutrientes a través de una sonda de alimentación, en aquellos casos en los cuales la vía oral no esté disponible, pero manteniendo aún parcial o totalmente la función del tracto gastrointestinal; este concepto esta en continuo desarrollo. (15)

En comparación con otros tipos de alimentación la nutrición enteral es requerida por tener:

- Composición definida
- Esterilidad
- Facilidad de administración
- Almacenamiento.
- Es más fisiológica y permite la reanudación de la alimentación oral con mejor tolerancia.
- Es más trófica sobre la mucosa intestinal.
- Presenta menor número de complicaciones y son menos graves.
- Es más económica.
- Resulta más fácil de administrar y controlar.
- Es menos traumática; entre otras.

Algunos inconvenientes que se pueden presentar son el trastorno de la flora bacteriana intestinal, de la barrera intestinal y otros trastornos intestinales. (15)

Mecanismo de la Nutrición enteral:

La nutrición enteral estimula el eje entero – insular preservando la relación insulina – glucagón, conserva el flujo nutritivo portal, de importancia primordial en el metabolismo lipídico y en la síntesis de lipoproteínas, permite la adaptación intestinal para nutrición intraluminal manteniendo la integridad de la estructura y función del epitelio yeyuno-ileal, la protección de la masa intestinal, de su contenido en proteínas y en ADN, de la actividad enzimática del intestino delgado, la cual es sabido que depende de la instilación intraluminal de nutrientes. El mantenimiento del trofismo intestinal tiene importancia no solo desde el punto de vista de la absorción de nutrición sino en la integridad de la llamada barrera mucosa intestinal lo cual impide la traslocación bacteriana. (10)

3.3. Indicaciones, contraindicaciones y complicaciones de la Nutrición enteral.

3.3.1. Indicaciones de la Nutrición Enteral:

Se muestran en el cuadro N°1:
Cuadro Nº1:

De acuerdo a la vía de administración se clasifican en:

Administración gástrica:

En el preoperatorio y postoperatorio de cirugía no abdominal, se utilizan formulaciones poliméricas, administradas intermitentemente y asociadas o no a la alimentación oral.

En la cirugía colorrectal laparoscópica las dietas enterales postoperatorias iniciadas precozmente pueden ser bien toleradas y estimular la cicatrización de una anastomosis favoreciendo su colagenización. (15, 11)

Gastrostomía:

Es la vía de elección de la nutrición enteral de larga duración; siendo sus indicaciones principales las alteraciones de la deglución en pacientes neurológicos y las neoplasias esofágicas y del área orofaringolaringea. (10,11)

Administración yeyunal:

Esta indicado en pacientes con impedimento de vía oral por trastorno en la función, o por problemas neoplásicos, inflamatorios, traumáticos, neurológicos, inclusive psiquiátricos o uso de quimioterapia. (10,11)

Yeyunostomía:

Esta indicado en pacientes operados de tracto digestivo superior: esófago, estómago, duodeno, páncreas, vías biliares, hígado; y que han cursado con ayuno prolongado, baja de peso o están hipercatabólicos. (15,11)

3.3.2. Contraindicaciones de la Nutrición Enteral:

De acuerdo a la vía de administración se clasifican en:

Sonda Nasogástrica:
III. GENERALIDADES

En pacientes con inestabilidad hemodinámica existe la posibilidad de dificultad para mantener una perfusión tisular aceptable, la alimentación puede profundizar las alteraciones hemodinámicas y metabólicas;

En pacientes con hemorragia digestiva.

En pacientes con alto riesgo de bronco aspiración y pacientes con desequilibrio electrolítico. (10,11)

Gastrostomía:

Enfermedad primaria en el estómago, vaciamiento anormal del estómago o del duodeno.

Reflujo gastroesofágico severo; en caso de realizar proceso endoscópico esta contraindicado cuando la luz del endoscopio no es visible a través de la pared abdominal.

En pacientes obesos, con ascitis e inmunosupresión o malnutrición severa que puede aumentar las complicaciones sépticas. (10,15)

Sonda nasoyeyunal:

Obstrucción total del tracto digestivo alto, patología severa del tracto digestivo bajo. (15)

Yeyunostomía:

Pataología severa del tracto digestivo bajo, peritonitis, ascitis, obstrucción intestinal parcial, adherencias extensas.

Enfermedad inflamatoria del intestino que se va canular. (10,15)

3.3.3. Complicaciones de la Nutrición Enteral:

Es posible clasificar las complicaciones en las siguientes categorías:

Complicaciones infecciosas:

Los gérmenes causantes de contaminación de la mezcla nutritiva con mayor frecuencia son enterobacterias (Colibacilos, Klebsiella, Salmonella, Staphylococcus, entre otras).

La complicación infecciosa más grave de la alimentación enteral es la neumonía por broncoaspiración, frecuentemente silenciosa y llega a ocurrir aun en sujetos con apoyo ventilatorio mediante intubación endotraqueal; esto ocurre por regurgitación debido al reflejo, obstrucción o retención gástrica, con aspiración hacia pulmones. El daño causa acidez gástrica en el epitelio bronquial produce degeneración, edema y hemorragia, lo cual involuciona 3 a 4 días sino ocurre sobre infección. (10, 15)

Complicaciones gastrointestinalles:

Las principales complicaciones gastrointestinales son las nauseas, vómitos, distensión abdominal, cólicos, flatulencia, retención gástrica, diarrea y malabsorción. Los factores causales son de tipo físico y químico: hiperosmolaridad, densidad energética, temperatura y velocidad a la que se infunde la mezcla, por un lado, e intolerancia a la
lactosa u otros componentes por el otro. La preexistencia de malabsorción intestinal es una alteración que facilita este tipo de complicaciones. (10,34)

Complicaciones metabólicas:
La más frecuentes son la deshidratación e hiper-glucemia. La hiper-glucemia se manifiesta de preferencia por la utilización de fórmulas elementales en pacientes con intolerancia a la glucosa; en el caso de la hipofosfatemia puede presentarse de manera aguda, posterior a la realimentación en sujetos desnutridos. Estas alteraciones incluyen cambios de la fosfatasa alcalina, gamma – glutamil transpéptidasa y concentración de enzimas hepatocelulares con incremento moderado de valores plasmáticos de bilirrubina; sin embargo, esto no ha sido motivo para suspender la alimentación enteral. (10)

Complicaciones psicológicas:
La administración enteral a debito continuo representa para el paciente un tipo de nutrición mecanizada, manipulada y poco gratificante; la sonda, la fórmula nutritiva y la bomba infusora se colocan al paciente en situación de dependencia nutricional no habitual, de lo cual muchas veces desconfía, lo que desencadena a veces trastornos de la conducta alimentaria, así como ansiedad y depresión. (15)

Complicaciones mecánicas:
La instalación de la sonda puede ser causa de irritación y erosión de la mucosa nasal, faríngea, esofágica y gástrica. Se han reportado molestias nasofaringeas por inflamación crónica secundaria a intubación prolongada, la cual puede extenderse y provocar sinusitis y otitis media, sobre todo cuando se ha utilizado sondas de calibre grueso; a su vez situar de forma inadecuada la sonda es por lo regular a errores técnicos, pudiendo ocasionar retroceso de la sonda, instilación en la traquea o bronquios con el siguiente neumotórax. Puede presentarse obstrucción de la sonda por residuos de la fórmula en la luz a causa del calibre pequeño de la misma, lo cual reduce de modo notable el aporte nutricio y aumenta el tiempo que el personal debe dedicar al procedimiento. (15, 31)

3.4. Administración del Nutriente Enteral:
La administración de nutrientes enterales al tracto gastrointestinal o alimentación enteral puede hacerse de dos formas: la alimentación oral que es la forma natural en la que los nutrientes ingesan para su digestión y absorción. Las demás formas, que son métodos artificiales, en las que los nutrientes se entregan en diversos sitios del tracto gastrointestinal. Tienen en común que son administrados por sonda y, por consiguiente, están en forma líquida y se han denominado nutrición enteral por sonda nasoentérica. La cual esta dividido en 2 clases: la sonda que ingresa al tracto gastrointestinal por orificios naturales o lo hace a través de ostomías creadas quirúrgicamente. En el primer caso puede ingresar por la nariz o boca y su extremo, donde los nutrientes son depositados, es localizado en el estómago, duodeno o yeyuno. La alimentación se describiría entonces: naso u oro gástrica, naso u oro duodenal y naso u oro yeyunal. En el segundo caso
ingresa por una apertura del tracto gastrointestinal comunicada a la piel (ostomía). Las más frecuentes son: faringostomía, gastrostomía y yeyunostomía. Se denominan en conjunto alimentación por enterostomía. (14)

Antes de iniciar la terapia nutricional la posición del paciente debe ser de preferencia en Fowler, es decir con la cabeza levemente inclinada; se lubrica la punta distal de la sonda y se introduce con suavidad hasta la oro faringe, en dicho sitio solicitamos al paciente que degluta, o nos ayudamos dándole un trago de agua, y al momento de pasarla en forma coordinada introducimos la sonda para rebasar la unión faringe-esofágica, sitio donde existe el riesgo de caer en laringe y traquea condicionando en el paciente; tos, vomito, e inclusive bronco aspiración; por lo tanto si logramos tal coordinación, la epiglotis cierra la laringe y la sonda tiene como único camino el esófago. Rebasando este sitio la sonda se desliza suavemente hasta el estómago, retiramos la guía metálica y nos aseguramos que la sonda este en el esófago al succionar con la jeringa y obtener jugo gástrico, o al insuflar aire y escucharlo con el estetoscopio a nivel del epigastrio.

Debemos de tener paciencia para esperar que la sonda avance hasta el yeyuno (sitio ideal), para iniciar la infusión del nutrientes; esto lo logramos colocando al paciente en decúbito lateral derecho y estimulando el peristaltismo con Metoclopramida, siempre y cuando no exista contraindicación para su uso. (10)

3.4.1.Elementos para alimentación por tubo o sonda:

3.4.1.1.Sonda Nasoentérica:

Hace unos años se empleaba sondas rígidas de polietileno, de gran diámetro, las mismas que se usaban para drenaje del estómago o de intestino. Estas sondas han sido reemplazadas por sondas diseñadas exclusivamente para alimentación. Sus principales características son:

- Material blando, que produce baja reacción tisular. Se emplea poliuretano o silicona. El material blando reduce las exociaciones y las ulceraciones oro faringeas y esofágicas y las ocasionales perforaciones. La buena tolerancia del paciente a estos materiales facilita su uso por tiempo prolongado. (15)
- Diámetro delgados que van de 8 a 12 French (1 French = 0,34 mm); la cual se selecciona de acuerdo a la densidad del nutriente y a la longitud de la sonda la cual puede ser de 90, 105 y de 120cm. Con esto se reducen las lesiones irritativas, la incomodidad y el reflujo gastroesofágico. El diámetro exige que las fórmulas no sean viscosas, ni con partículas gruesas, siendo este su principal inconveniente. (47)
- Peso en su extremo, de tungsteno o mercurio, en algunos diseños para facilitar su posicionamiento en el duodeno o en el yeyuno. (11,15)
- Marcas radioopacas para adecuado control radiológico de su posición. (11)
- Contenedores para irrigar y para empatar las líneas de infusión de característica
diferentes de los conectores venosos. (15)

Las sondas nasoentericas diseñadas tienen amplias ventajas sobre los anteriormente usados. Las 2 únicas desventajas son la necesidad de administrar soluciones nutritivas no viscosas y su alto costo.

3.4.1.2. Bombas de infusión:

Para la nutrición enteral por sonda, las bombas de infusión constituyen un avance significativo en la aplicación de esta terapia. Dentro de sus ventajas están: (11)

- Velocidad de infusión constante lo que reduce las complicaciones por exceso (distensión gástrica, náuseas, vómito, bronco aspiración, diarrea, cólicos) o por defecto (insuficiente dosificación, oclusión de las líneas de infusión, prolongado tiempo de infusión hasta horas avanzadas en la noche en que el control puede no ser tan adecuado).
- Reducción del tiempo requerido para alcanzar el volumen calculado para la mayoría de los pacientes.
- Menor oclusión de las líneas de infusión y del tubo nasoenterico por cuanto las soluciones entérales no avanzan por gravedad sino que fluyen por presión constante.
- Aviso inmediato de las alteraciones en la infusión como oclusión y finalización de la mezcla.

3.5. Nutrientes enterales totales:

La utilización de fórmulas complejas requiere la existencia de servicio de nutrición o unidades de soporte nutricional con personal especialmente calificado que asegure eficiencia en el desarrollo de diferentes protocolos. De las distintas clasificaciones de las dietas enterales la Hemberger y Weinsier considera tres categorías de distinta importancia, valorando criterios mayores o prioritarios de acuerdo con los contenidos, administración, osmolaridad, costo, etc. En España la clasificación más completa es la aportada por Vásquez y col., la cual describe preparados poliméricos (proteína completa), preparados monoméricos (parcialmente hidrolizables) y los preparados especiales. (13,15)

Tabla N°1: Clasificación de los productos enterales según sus características de aplicación clínica.(13)

<table>
<thead>
<tr>
<th>Osmolalidad (mOsmol/Kg)</th>
<th>Carbohidratos (MJ/L) ([Kcal/mL])</th>
<th>Proteínas (g/M) ([g/1000 Kcal])</th>
<th>Grasas (g/M) ([g/1000 Kcal])</th>
<th>Vía Aconsejada de administración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polimérica</td>
<td>300-500</td>
<td>4,2-5,0 (1-1,2)</td>
<td>7-11</td>
<td>6-11</td>
</tr>
</tbody>
</table>
III. GENERALIDADES

<table>
<thead>
<tr>
<th></th>
<th>Osmolaridad (mOsmol/Kg)</th>
<th>Carbohidratos (MJ/L) ([Kcal/mL])</th>
<th>Proteínas (g/M) ([g/1000 Kcal])</th>
<th>Grasas (g/M) ([g/1000 Kcal])</th>
<th>Vía Aconsejada de administración</th>
</tr>
</thead>
<tbody>
<tr>
<td>convencional</td>
<td></td>
<td>(30-45)</td>
<td>(25-45)</td>
<td></td>
<td>intestinal</td>
</tr>
<tr>
<td>Polimérica, gran densidad calórica</td>
<td>>450</td>
<td>6,3-8,4 (1,5-2)</td>
<td>8-10 (35-42)</td>
<td>8-12 (33-52)</td>
<td>Oral, gástrica, o intestinal</td>
</tr>
<tr>
<td>Parcialmente hidrolizada/ Elemental</td>
<td>250-600</td>
<td>4,2-5,4 (1-1,3)</td>
<td>7-12 (30-50)</td>
<td>1-10 (3-40)</td>
<td>Intestinal</td>
</tr>
<tr>
<td>Preparaciones de objetivo específico</td>
<td>>450</td>
<td>4,2-8,4 (1-2)</td>
<td>2-14 (10-60)</td>
<td>1-14 (2-60)</td>
<td>variable</td>
</tr>
</tbody>
</table>

De acuerdo con el estado físico de las proteínas en:

Poliméricas o proteínas intactas. Son las que contienen los nutrimentos en forma de polímeros. Usualmente estas formulas contienen residuos (fibra) y su osmolaridad varía de 300 a 500.

Semielementales o proteínas hidrolizadas. También conocidas como oligomericas. Tienen pépticos cortos cuya absorción ha sido documentada como más eficiente que para los aminoácidos simples. Pueden contener aminoácidos cristalinos en proporciones variables. Los demás componentes son también fraccionados y su osmolaridad varía de 250 a 600 con bajo residuo.

Elementales o aminoácidos cristalinos. Aquellas que contienen nutrimentos en forma de monómeros. Estas fórmulas son bien toleradas aun en casos de deficiente capacidad digestiva puesto que no requieren de hidrólisis y se absorbén con facilidad en las vellosidades intestinales. Estrictamente hablando se consideran aquellas dietas que contienen únicamente aminoácidos cristalinos y los demás componentes son monómeros orgánicos. Su osmolaridad varía de 450 a 850, no contienen residuos y fluyen fácilmente por las sondas de alimentación. (14, 15)

3.6. Administración de los Medicamentos por Sonda Nasoentérica:

Las formas farmacéuticas más adecuadas para la administración por sonda nasoentérica son las formas líquidas orales: jarabes, gotas, suspensiones, ampollas bebibles, etc. Cuando no se dispone de formas líquidas la alternativa es adaptar otras formas farmacéuticas para su administración por sonda. (2)
La trituración de formas farmacéuticas orales sólidas para su administración por sonda Nasogástrica es una práctica frecuente en el medio hospitalario.

Aunque las formas farmacéuticas sólidas están diseñadas para ser administradas intactas por vía oral, se trata con frecuencia de comprimidos o cápsulas de liberación gástrica que pueden triturarse o vaciar el contenido en el caso de las cápsulas, y dispersarse en agua.

No obstante, este método puede ser incorrecto no sólo por alterar las propiedades fisicoquímicas y farmacocinéticas de los medicamentos sino por poder interferir con la nutrición enteral. (9)

En general no se recomienda mezclar los medicamentos con las formulas entérales ya que:

· Se alterarían las características fisicoquímicas.
· Se puede producir inestabilidad de la mezcla.
· Se alteran las propiedades farmacocinéticas de los fármacos.
· Se pueden obstruir las sondas.
· Se pueden producir interacciones medicamento – nutriente alterándose la biodisponibilidad de los mismos.

En varios protocolos la metodología es:

Administrar la medicación 1 hora antes o 2 horas después del bolus de nutrición enteral. No administrar simultáneamente los medicamentos y la nutrición enteral, salvo en el caso de medicamentos gastroerosivos.

En infusión continua debe suspenderse la nutrición enteral 15 minutos antes de administrar.

Lavar la sonda con 20 – 30mL de agua antes y después de cada administración.

En caso de tener que administrar varios medicamentos en la misma toma, hacerlo por separado lavando con 5 – 10mL entre cada medicamento. El orden de administración depende de la densidad de los preparados; administrar en primer lugar los menos densos.

Administrar la medicación lentamente en una jeringa.

Los comprimidos se deben triturar hasta obtener un polvo fino y en el caso de las cápsulas se debe vaciar su contenido; seguidamente se añaden 10-20mL de agua. Si el producto final resulta muy viscoso diluir hasta 60mL de agua. Administrar inmediatamente. (2)

Recomendaciones en la administración de medicamentos por sonda nasoentérica:

Comprimidos (de liberación inmediata): se deben triturar hasta polvo fino.

Comprimidos con cubierta pelicular (para enmascarar sabor): son de liberación inmediata, proceder de la misma forma anterior.
Comprimidos de liberación retardada: no deben triturarse, la trituración produce perdida de características de liberación. Riesgo de toxicidad e inadecuado mantenimiento de los niveles de medicamento a lo largo del intervalo terapéutico.

Comprimidos con cubierta entérica: no deben triturarse, la pérdida de la cubierta puede provocar la inactivación del principio activo o favorecer la irritación de la mucosa gástrica.

Cápsulas de gelatina dura (contenido en polvo): abrir la cápsula disolver su contenido en agua y administrar, en caso de inestabilidad y principios activos muy irritantes no es adecuado.

Cápsulas de gelatina dura (contenido de micro gránulos de liberación retardada o con cubierta entérica): las cápsulas pueden abrirlas pero los micro gránulos no deben molerse porque perderían sus características; la disponibilidad de la administración por sonda depende en gran medida del diámetro de los micro gránulos y de la sonda. (33)

3.7. Parámetros Fisicoquímicos que requieren monitorización cuando se administran Medicamentos y nutrientes entérales totales por sonda nasoenterica.

3.7.1. pH

Las drogas que son ácidos débiles o bases débiles, pueden existir en la forma ionizada o no ionizada (o una mezcla de ambas), pueden ser activas en una forma pero no en la otra; a menudo tales sustancias tienen un margen óptimo de pH para la máxima actividad. Por otra parte, los medicamentos completamente ionizados se absorben poco o nada. El porcentaje de absorción de una variedad de los medicamentos se relacionan con sus constantes de ionización y en muchos casos puede predecirse cuantitativamente sobre las bases de sus relaciones. Así, no sólo el grado de carácter ácido o básico de un medicamento sino consecuentemente también el pH del medio fisiológico (líquido gástrico o intestinal, plasma, líquido cefalorraquideo, etc.) donde el medicamento se disuelve o disemina ya que ese pH determina el grado en que puede convertirse en la forma iónica o no iónica. Así el ácido mandelico, el ácido benzoico o el ácido salicílico tienen una pronunciada acción antibacteriana en la forma no ionizada, pero prácticamente no tiene actividad en la forma no ionizada. En efecto, estas sustancias requieren medio ácido para ejercer su acción antibacteriana. (16)

3.7.2. Viscosidad:

Cuando se trata de una mezcla de dos líquidos, los resultados obtenidos pueden agruparse en uno u otro de los tres casos siguientes: (20)
Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total,

a) La viscosidad de la mezcla está comprendida entre los valores de las viscosidades de los componentes puros.

b) La viscosidad de la mezcla es mayor que la de cualquiera de sus componentes.

c) La viscosidad de la mezcla es menor que la de cualquiera de sus componentes.

En la práctica diaria a la hora de administrar dietas por vía enteral, se debería atender a determinados factores que en la actualidad no se tienen en cuenta y que evitarían muchas de las complicaciones que la nutrición enteral lleva asociadas. Una de la que consideramos más importante es la viscosidad de las Formas Farmacéuticas líquidas que van a ser administradas por la sonda nasogástrica, ya que mezclan, líquidos muy viscosos que posibilitan el riesgo de obstrucción de las sondas. (17)

Asimismo, la viscosidad del preparado nutricional puede dificultar el paso del medicamento a través de la sonda principalmente por reducción del diámetro del mismo.

Como norma si existe la posibilidad de obstrucción se deberá extremer los lavados tras la administración. (40)

3.7.3. Osmolaridad y osmolaridad:
La relación observada entre molalidad y osmolaridad es compartida en forma similar entre molalidad y osmolaridad. Una solución contiene una concentración osmolar de 1 cuando contiene 1 osmol de soluto/L de solución. Las soluciones osmolas, a diferencia de las soluciones osmiores, reflejan una relación peso en volumen entre la soluto peso y la solución final. Una solución 1 molar y 1 osmolar serían idéntica para no electrolitos. Para cloruro de sodio, una solución 1 osmolar contendría 1 osmol de cloruro de sodio por litro lo que se aproxima a una solución 0,5 molar. La ventaja de emplear concentraciones osmolas sobre concentraciones molares es la capacidad para relacionar un número específico de osmoles o miliosmoles con un volumen, como un litro o mL. Por lo tanto, el concepto osmolar es más sencillo y más práctico. (17)

3.7.4. Fijación de fármacos a proteínas.
Las drogas liberadas a la vía sistemática quedan disponibles a los tejidos y los órganos del cuerpo por medio de la sangre, algunas de ellas capaces de formar complejos con drogas. Como se acepta ampliamente que la respuesta farmacológica a una droga está determinada por la concentración de droga "libre" (es decir, no fijada, no formando complejos). (20)

Existen diversos mecanismos de interacción entre nutriente enteral y medicamentos los cuales van desde la unión a las proteínas hasta una alteración de la solubilidad del medicamento. (48)

3.8. Complicaciones de la Administración
Medicamento – Nutriente:

Una interacción medicamento – nutriente se define, como la aparición de un efecto farmacológico, de intensidad mayor o menor de la habitual, que surge como consecuencia de la presencia o acción simultánea de los nutrientes y los medicamentos. Las interacciones medicamento – nutriente, cuando el medicamento se administra oralmente o a través de la sonda Nasogástrica, en pacientes con nutrición enteral, pueden presentarse en cualquiera de los procesos LADME del medicamento. Aunque en esta definición no se incluyen las incompatibilidades medicamento – nutriente que tienen lugar, mayoritariamente, en las complejas mezclas de nutrientes. (31)

La administración concomitante de medicamentos, en forma de bolo, con nutrición enteral e introducida directamente en el estomago por sondas nasogástricas o por gastrostomías, permite al estomago funcionar de forma normal y preparar su contenido para su transito a lo largo del tracto gastrointestinal. Los tubos nasogástricos o de gastrostomía de gran calibré permiten la administración de partículas de medicamento relativamente grandes en el estomago. La colocación de sondas entéreas mas allá del estomago altera el método de disolución de la forma farmacéutica en relación con la administración normal. La yeyunostomia y las sondas nasoyeyunales o nasoduodenales evitan el paso por el estomago y su actividad preparatoria sobre los medicamentos y nutrientes. Cuando se administra un medicamento en el intestino delgado a través de las sondas de este tipo, se debe tener especial precaución en conocer el diámetro interno de la sonda, la viscosidad del medicamento que se administra y en realizar una limpieza adecuada de la sonda tras la administración. (34)

Para que un medicamento atravesando la sonda nasogástrica llegue a su lugar de absorción debe ser capaz de circular por el estrecho lumen de la sonda. Por ello, en la mayoría de las ocasiones es necesario administrar el medicamento en forma líquida, ya que las partículas grandes de medicamento no pueden circular a su través. Sin embargo, los fármacos no siempre están disponibles en formas farmacéuticas no agregadas, por lo que con frecuencia, para realizar la administración del fármaco en la sonda enteral, se recurre a modificar la forma farmacéutica original. Este hecho puede conllevar alteraciones de los procesos cinéticos y dinámicos de los principios activos, modificar la respuesta farmacológica e incrementar el riesgo de efectos adversos. (11)

La administración de medicamentos por sonda nasogástrica o enterostomía es una práctica habitual en el hospital, pero a pesar de su comodidad puede plantear una serie de incompatibilidades con la nutrición enteral. Estas incompatibilidades se clasifican en: físicas, farmacéuticas, fisiológicas, farmacológicas y farmacocinéticas; que pueden producir: ineficacia del tratamiento, obstrucción de la sonda y/o reacciones adversas, fundamentalmente las gastrointestinales. (10)

3.8.1. Incompatibilidad física:

Cuando se produce un cambio físico en la solución enteral o de la forma farmacéutica administrada. El efecto que ejercen los nutrientes sobre la velocidad de vaciado gástrico y
en la absorción de los medicamentos, no se puede considerar uniforme, sino que depende de una serie de características, entre las que cabe mencionar la consistencia, viscosidad, cantidad y composición del contenido gástrico.

El resultado final puede ser la formación de un precipitado o un cambio en la viscosidad, que pueden originar oclusión de la sonda, dificultad para la absorción del fármaco y/o nutrientes o una inactivación de los mismos. (34)

3.8.2. Incompatibilidad física por el pH:

La administración de disoluciones de medicamentos con valores de pH extremos (inferiores a 4 o superiores a 10) junto con la nutrición enteral conlleva el riesgo de precipitación y consiguiente obstrucción de la sonda.

En el caso de las sondas transpilóricas y yeyunostomías la administración de las formas farmacéuticas con pH inferior a 4 conlleva un mayor riesgo de precipitación del medicamento por la diferencia de pH, por lo que es recomendable optar por otras alternativas. (31)

La mayoría de los medicamentos son moléculas orgánicas de carácter ácido o básico débil que, en función de su pKa y del pH del medio, cambian su proporción en la forma ionizada y la no ionizada, hecho que repercute en su absorción. Los nutrientes pueden modificar el pH del tracto gastrointestinal, también la proporción de fármaco en forma ionizada y no ionizada y, por lo tanto su velocidad de adsorción.

Así, de forma general la velocidad de absorción de fármacos ácidos y básicos se modifica por los cambios de pH del medio; tal como lo muestra la siguiente tabla: (10)

Tabla N°2: El pH modifica la velocidad de adsorción de fármacos ácidos y básicos.

<table>
<thead>
<tr>
<th>Cambio del pH medio</th>
<th>Carácter de Fármaco</th>
<th>% de forma no ionizada</th>
<th>Efecto en la absorción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidificación</td>
<td>Ácido débil</td>
<td>Aumenta</td>
<td>Aumenta</td>
</tr>
<tr>
<td></td>
<td>Base débil</td>
<td>Aumenta</td>
<td>Disminuye</td>
</tr>
<tr>
<td>Alcalinización</td>
<td>Ácido débil</td>
<td>Aumenta</td>
<td>Disminuye</td>
</tr>
<tr>
<td></td>
<td>Base débil</td>
<td>Aumenta</td>
<td>Aumenta</td>
</tr>
</tbody>
</table>

3.8.3. Incompatibilidad farmacéutica:

Es el tipo de incompatibilidad que se produce cuando la manipulación de la forma farmacéutica modifica la eficacia del fármaco o la tolerancia al mismo.

Además del tipo de forma farmacéutica, antes de manipularla es importante conocer los motivos que pueden justificar dicha formulación, como:
- Inestabilidad del fármaco en el pH ácido del estómago.
- Irritación de la mucosa gástrica por el pH.
- Inestabilidad del medicamento en otras formas farmacéuticas.
- Características organolépticas desagradables.
- Conseguir una liberación constante del medicamento. (31)

3.8.4.Alteraciones fisiológicas:

Se produce como resultado de una acción no farmacológica del principio activo o alguno de los componentes de la formulación, y tienen por consecuencia la disminución de la tolerancia al soporte nutricional. Generalmente da lugar a alteraciones gastrointestinales que a menudo se atribuyen a la formulación de nutrición enteral, cuando el problema esta realmente relacionado con los medicamentos. (31)

3.8.5.Osmolalidad elevada:

La osmolalidad es una de las características físicas que determinan la tolerancia del organismo a una disolución. Cuando más se aproxime la osmolalidad de la disolución a administrar a la de las secreciones gastrointestinales (aproximadamente de 100 – 400mOsm/Kg.), mejor se tolerara. Sin embargo, hay formas farmacéuticas líquidas con osmolalidades de hasta 6 000 mOsm/Kg. que, si se administran sin diluir, pueden originar problemas que depende en gran medida de la localización de la sonda:

Estómago: las soluciones de elevada osmolalidad se toleran mejor tras administración intragastrica, ya que se diluyen en el estómago antes de pasar al duodeno. Sin embargo, si la velocidad de administración es excesiva, el problema puede surgir en el intestino delgado por no disponer de tiempo suficiente para reducir la osmolalidad.

Duodeno y yeyuno: no se recomienda la administración de soluciones con osmolalidades iguales o superiores a 1 000 mOsm/Kg. por sonda transpilórica o yeyunostomía, puesto que causa una secreción importante de agua en el tracto gastrointestinal, que puede llevar a: distensión abdominal, nauseas, espasmos, diarrea y/o desequilibrios electrolíticos. (17,31)

3.8.6.Elevada cantidad de sorbitol:

Es un excipiente que se puede encontrar en soluciones y jarabes para mejorar el sabor y la estabilidad. Dosis superiores a 10g/día pueden causar aerofagia y distensión abdominal, mientras que las superiores a 20g/día producen espasmos abdominales y diarrea. (31)
3.8.7. Interacción farmacológica:

Cuando el fármaco, por su mecanismo de acción, provoca una alteración de la tolerancia a la nutrición enteral o cuando esta interfiere con la eficacia de los medicamentos administrados.

Entre las manifestaciones clínicas de este tipo de incompatibilidad se encuentran:

Diarrea: Puede estar causada por el exceso de medicamentos procinéticos (empleados para incrementar la tolerancia a la nutrición enteral), laxantes, etc.

Disminución de la motilidad o velocidad de vaciado: Opiáceos, medicamentos con actividad anticolinérgica (antihistamínicos, anti depresivos tricíclicos, fenotiazinas o antiparkinsonianos).

Náuseas o emesis: Antiparkinsonianos.

Antagonismos: La vitamina K de la nutrición enteral contrarresta los efectos de los anticoagulantes orales, por lo que se deben evitar grandes variaciones en el aporte y realizar un seguimiento más estrecho de la coagulación. (34)

3.8.8. Interacciones farmacocinéticas:

Cuando la administración del medicamento por sonda Nasogástrica da lugar a alteraciones en sus propiedades farmacocinéticas (biodisponibilidad, distribución, metabolismo y excreción).

Un ejemplo es la disminución de la absorción de Fenitoína en pacientes que reciben nutrición enteral, que dificulta alcanzar niveles terapéuticos cuando el medicamento se sigue administrando por sonda y por lo tanto aumenta el riesgo de convulsiones. Para evitarla o disminuirla su importancia se recomienda administrarla 2 horas antes o después de la nutrición enteral para minimizar el riesgo de interacción, así como una monitorización más frecuente de los niveles plasmáticos. (30)

3.9. Función del Químico farmacéutico en el equipo de soporte nutricional:

La identificación de interacciones medicamento-nutriente potenciales es una actividad del Farmacéutico y proporciona una contribución única al cuidado nutricional del paciente. También se sabe que el tratamiento nutricional puede tener algún efecto sobre el tratamiento medicamentoso. Los alimentos pueden interferir con la absorción de muchos medicamentos.

Otras consideraciones para el Farmacéutico especialista en nutrición son: tratamiento medicamentoso alterado secundario al estado nutricional, fallo Fármaco terapéutico debido a nutrientes (por ejemplo, Warfarina y productos enterales que contengan grandes cantidades de vitamina K) y reacciones adversas a medicamentos.

"Programa Cybertesis PERÚ - Derechos son del Autor"
causadas por nutrientes (por ejemplo, inhibidores de la monoaminoxidasa y alimentos que contengan tiramina).

Considerando el aumento en los conocimientos acerca de las interacciones potenciales medicamento-nutriente, el Farmacéutico deberá monitorizar muy de cerca el tratamiento farmacológico concomitante al apoyo nutricional. (14)
Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total,
IV. PARTE EXPERIMENTAL

4.1. Localización:

El presente estudio se realizó en la Unidad de Soporte Nutricional Artificial y Metabólico del Departamento de Cirugía General del Hospital Edgardo Rebagliati Martins; además se contó con el apoyo del Laboratorio Farmacéutico Hersil.

4.2. Materiales, Equipos y Reactivos:

4.2.1. DETERMINACIÓN DE LA VISCOSIDAD:

Materiales y reactivos:

- Beaker
- Agua destilada
- Suspensión medicamentosa
Nutriente enteral total.

Equipo:

BOMBA DE INFUSION: ROSS PATROL ENTERAL PUMP.

VISCOSIMETRO BROOKFIELD mod. LVTDV II; (Spin N°1 y 2).

Método: Rotacional a temperatura ambiente 25°C.

Procedimiento:

Se midió la viscosidad de las suspensiones acuosas de los medicamentos en estudio y del nutriente enteral independientemente luego de ello se preparó las mezclas en las siguientes proporciones:

- Suspensión medicamentosa (300mL) + NET (250mL)
- Suspensión medicamentosa (300mL) + NET (300mL)

4.2.2. DETERMINACIÓN DE LA VELOCIDAD DE CAÍDA:

Materiales:

- Probeta
- Sonda nasogástrica
- Agua destilada
- Bolsa de nutrición enteral

Equipo:

- CRONOMETRO

Método: Caída libre.

Procedimiento:

Se determinó los tiempos medios que tardaba en fluir gravitatoriamente a través de la sonda nasogástrica a desde la bolsa de nutrición hasta una probeta, limpiando antes y después de la administración de la suspensión medicamentosa (20ml agua) con 50 ml de agua.

Luego se procedió a realizar el mismo procedimiento pero se utilizó 10ml se la suspensión medicamentosa y 10mL del NET.

4.2.3. DETERMINACIÓN DEL pH:

Materiales y reactivos:

- Beaker
- Pizeta

- Buffer fosfato pH 7 (pHydron Buffer certified at 7.00 +/- 0.02 @ 25°C: Sodium Phosphate, dibasic.

"Programa Cybertesis PERÚ - Derechos son del Autor"
IV. PARTE EXPERIMENTAL

Agua destilada
Nutriente enteral total
Suspensión medicamentosa
Aspirado gástrico

Equipo:
BOMBA DE INFUSION: ROSS PATROL ENTERAL PUMP.
POTENCIOMETRO ORION MODEL 720A.

Recolección y preparación de las mezclas para el estudio:

Jugo gástrico: se recolectó por aspiración jugo gástrico de pacientes hospitalizados que iban a recibir nutrición enteral inmediatamente después de la colocación de la sonda nasoenterica un volumen comprendido entre 5 a 10ml.

Suspensión medicamentosa: los medicamentos fueron suspendidos en 20ml de agua.

Nutrición enteral: se utilizó para el procedimiento 20ml NET.

Método: El método empleado para la determinación del pH fue el potenciometrico. Este método consiste, en esencia en una membrana de vidrio que contiene una disolución de actividad de iones H⁺ constante en el cual está inmerso un electrodor de referencia. El instrumento puede ser capaz de percibir el potencial a través del electrodor y para estandarizar el pH se aplica un ajuste de potencial a la circulación o calibración, pudiéndose controlar los cambios en milivoltios por unidad de cambios en pH, los cuales son leídos a través de una temperatura de control 25 °C +/- 2.

Procedimiento:
Se procedió a medir el pH de forma independiente de:
Aspirado gástrico
Suspensión medicamentosa
Nutriente enteral total
Luego se procedió a la preparación de las mezclas:
20mL suspensión acuosa + 20mL NET
20mL suspensión acuosa + 20mL NET + 5mL aspirado gástrico
Luego se procedió a la determinación del pH de dichas mezclas.

4.2.4. DETERMINACIÓN DE LA OSMOLALIDAD:

Materiales y reactivos:
Viales y tubos de prueba
Estándar del osmometro:
(CLINITROL 290mOsm +/- 2mOsm referente solution : near – serum – osmolality).
Agua destilada
Nutriente enteral total
Suspensión medicamentosas

Equipo:

OSMOMETRO:
ADVANCED MICRO OSMOMETER MODEL 3300 VERSION 3.0.
BOMBA DE INFUSION: ROSS PATROL ENTERAL PUMP.

Método: El método para la determinación de la osmolalidad fue el crioscopico que se basa en que cada osmol de soluto adicionado a un kilogramo de agua disminuye el punto de congelación aproximadamente en 1.86°C, este cambio físico se mide y ello permite una exacta estimación de la concentración osmolal.

Procedimiento:

Se midió la osmolalidad del NET y de las suspensiones medicamentosas de forma independiente, luego de ello se midió la osmolalidad de la mezcla (suspensión medicamentos con NET) en los siguiente tiempos de infusión con la bomba infusora: a los 12, 36 y 60 minutos.

4.2.5. DETERMINACIÓN: UNIÓN DE FENITOÍNA A LAS PROTEÍNAS DEL NUTRIENTE ENTERAL TOTAL.

Materiales y reactivos:

NaOH 0.1M
Ácido tricloroacético al 20%
Agua destilada
Estándar de Fenitoína del inmulite.
Suspensión de Fenitoína.
Viales y tubos de prueba
Nutriente enteral total

Equipo:

INMULITE.
BOMBA DE INFUSION: ROSS PATROL ENTERAL PUMP.
POTENCIOMETER ORION MODEL 720A

Método: Inmunocromatografía.

Procedimiento:

Se midió la concentración de Fenitoína tras su exposición al NET durante las primeras 4 horas de exposición (tiempos de infusión con la bomba infusora: 0:00, 1:30,
3:00, 3:30 y a las 4:00 horas).

Para ello inicialmente a la suspensión de Fenitoína se le adiciono NaOH 0.1M gota a gota hasta conseguir una solución transparente. Luego se procedió a proceder con la infusión en los tiempos indicados, manteniendo agitación constante a 25°C. Para la determinación de las concentraciones de Fenitoína, en los tiempos indicados se precipitaron las proteínas de las mezcla con ácido tricloroacético al 20%, y se procedió a la lectura de la concentración de la Fenitoína en el sobrenadante.

4.3. Metodología:

La metodología adoptada es prospectiva y experimental. Para la recolección de los datos del estudio fisicoquímico se realizo un análisis preliminar de diseño longitudinal, observacional y descriptivo en pacientes con medicación y nutrición por sonda nasogástrica, obteniéndose las pautas a seguir sobre los parámetros del estudio In Vitro.

4.4. Recolección de Datos:

La población de pacientes a los cuales se realizo seguimiento fue de 191, de los cuales el 54.97% de ellos recibieron NET con medicación por sonda nasoenterica.

El tamaño de la muestra fue representado por 15 formas farmacéuticas sólidas que fueron administradas a los pacientes con NET y medicación por sonda nasoenterica; que fueron seleccionados dentro del periodo de los 3 meses de seguimiento.

Con el objetivo de determinar la población de pacientes a los cuales se realizo el seguimiento se adopto las siguientes características:

CARACTERÍSTICAS PARA DEFINICIÓN POBLACIONAL DEL SEGUIMIENTO DE PACIENTES:

Criterios de inclusión:

Pacientes Hospitalizados que reciben nutrición enteral total y medicamentos por sonda nasogástrica.

Criterios de exclusión:

Pacientes Hospitalizados que reciben nutrición enteral total pero que no reciban medicamentos por sonda nasogástrica.

Pacientes Hospitalizados que no reciben nutrición enteral total pero que reciban medicamentos por sonda nasogástrica.

Criterios de eliminación:

Pacientes Hospitalizados que cumpliendo con los criterios de inclusión y de
exclusión, tengan un periodo de seguimiento menor de 2 días (fallecimiento, transferencia a otra especialidad).

Las estrategias adoptadas para la realización del presente trabajo fueron:

Base de datos (observacion de la metodologia):

Creación de una base de datos de todos los medicamentos que son prescritos y administrados por sonda nasogástrica con el fin determinar cuales son las formas farmacéuticas sólidas mas utilizadas; para la selección y evaluacion de sus propiedades físico químicas como son: osmolaridad, pH, viscosidad, velocidad de caída del Medicamento por la sonda nasogástrica.

Para un adecuado proceso de captacion de informacion la secuencia de la metodologia a seguir sera:

I. Recoleccion de datos:
 Datos de filiación, sonda nasogástrica, nutrientes y medicamentos.

II. Evaluacion de datos:
 Medicamento, forma farmacéutica y dosis utilizada.
 Tipo de sonda nasogástrica.
 Pauta de administración.
 Forma de limpieza de la sonda (antes, después y entre la medicación).
 Obstrucción de la sonda.
 Método que se empleo para desobstruir la sonda.
 Retiro de la sonda.

4.5. Estudio In Vitro:

Metodología: Prospectivo, experimental

CARACTERÍSTICAS PARA DEFINICIÓN POBLACIONAL DE LOS MEDICAMENTOS A LOS CUALES SE EVALUARAN LOS PARÁMETROS FISICOQUÍMICOS:

Criterios de inclusión:

- Formas farmacéuticas sólidas que se administran con nutrición enteral total (Osmolite HN) por sonda nasogástrica.
- Formas farmacéuticas sólidas con mayor frecuencia de administración y aquellas con potencial riesgo farmacológico.

Criterios de exclusión:

- Formas farmacéuticas sólidas que no fueron administradas con nutriente enteral total (Osmolite HN) por sonda nasogástrica.
Evaluación “In Vitro”:

Se diseñó un sistema que simulará las condiciones en que el medicamento era sometido previamente a la administración del medicamento por sonda nasogástrica. La medición de la osmolaridad se realizó con el equipo OSMOMETRO: (ADVANCED MICRO OSMOMETER MODEL 3300 VERSION 3.0); el análisis del pH se medirá con el POTENCIOMETRO ORION MODEL 720A; la viscosidad mediante el VISCOSIMETRO BROOKFIELD mod. LVTDD II; el tiempo de caída del medicamento se medirá con el CRONOMETRO tomando como punto de partida al tiempo de caída del Medicamento desde la bolsa de nutrición hasta una probeta, limpiando antes y después de la administración del medicamento con 50mL de agua; y la medición de la unión de las proteínas del nutriente a la Fenitoína se realizara con un equipo de quimioluminiscencia INMULITE.
Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total,
V. RESULTADOS

En el HNRM la dispensación de los nutrientes enteral isotónicos completos está a cargo de la unidad de soporte nutricional artificial y metabólica (USNA), en el cual participa un equipo multidisciplinario, en donde el Químico Farmacéutico aporta todos sus conocimientos relacionados con las posibles incompatibilidades entre la terapia nutricional y medicamentosa.

Administración de medicamentos por sonda Nasogástrica:

Las encargadas de la administración de la medicación son las enfermeras las cuales proceden de la siguiente manera:

Trituran la forma farmacéutica sólida en un mortero hasta obtener un polvo homogéneo el que posteriormente se disuelve en aproximadamente 20ml de agua tibia, agitando para homogenizar, esta suspensión se administra por la sonda lentamente.

Esta metodología se cumple también para el caso en que se tenga que administrar varios medicamentos a la misma hora.

En casos de infusión continua del nutriente, se procede a suspender unos 15 minutos antes de administración del medicamento, luego se realizó la metodología señalada. (33)

5.1. ANÁLISIS PRELIMINAR A LA DETERMINACIÓN
FISICOQUÍMICA:

Metodología: Observacional, descriptivo y transversal.

A. Pacientes monitorizados:

En la Unidad de Soporte nutricional artificial y metabólica del Hospital Edgardo Rebagliati Martíns durante el periodo de seguimiento de Junio, Julio y Agosto del 2003, se observo que de 191 pacientes evaluados, el 54.97% recibieron nutrición enteral total. Para el estudio de acuerdo a los datos encontrados en el mes de Junio se reporto que el 59.32% recibió nutrición enteral total siendo separado 1 paciente que no cumplía con los criterios de selección señalados, para el mes de Julio se reporto que el 74.46% recibió también nutrición enteral total siendo 4 pacientes separados por no cumplir con los criterios de selección señalados y finalmente para el mes de Agosto el 41.17% los pacientes que recibieron nutrición enteral total siendo separado 3 pacientes por no cumplir los criterios de selección señalados. Siendo el 52.38% los que recibieron Osmolite HN y medicación por sonda nasogástrica durante el periodo de seguimiento.

B. Diagnósticos de los pacientes monitorizados:

Los principales diagnósticos de los pacientes que fueron monitorizados durante el periodo de seguimiento se muestra en la Cuadro N° 2

Cuadro N°2: Principales diagnósticos de los pacientes que recibieron soporte nutricional enteral durante el periodo de estudio:
<table>
<thead>
<tr>
<th>Enfermedad</th>
<th>Frecuencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neumonia Intra Hospitalaria</td>
<td>1</td>
</tr>
<tr>
<td>Accidente Cerebro Vascular, Hipertensión, Infección del Tracto Urinario</td>
<td>1</td>
</tr>
<tr>
<td>Síndrome Pilórico, d/c Neoplasia maligna gástrica y de vías biliares</td>
<td>1</td>
</tr>
<tr>
<td>Sepsis foco múltiple, Insuficiencia respiratoria aguda</td>
<td>1</td>
</tr>
<tr>
<td>Trastorno metabólico (retención nitrogenada)</td>
<td>1</td>
</tr>
<tr>
<td>Anemia microcitica hipocrómica</td>
<td>1</td>
</tr>
<tr>
<td>Neoplasia maligna de colon, enfermedad diverticular</td>
<td>1</td>
</tr>
<tr>
<td>Desnutrición calórica proteica</td>
<td>1</td>
</tr>
<tr>
<td>Encefalopatía hipóxica isquémica</td>
<td>1</td>
</tr>
<tr>
<td>Hipoalbuminemia severa</td>
<td>1</td>
</tr>
<tr>
<td>Panhipopituitarismo, hiponatremia, hipoproteinemia</td>
<td>1</td>
</tr>
<tr>
<td>Síndrome consuntivo, anemia ferropénica</td>
<td>1</td>
</tr>
<tr>
<td>Post operado de apencidectomia convencional</td>
<td>1</td>
</tr>
<tr>
<td>Fistula colocutánea</td>
<td>1</td>
</tr>
<tr>
<td>Traumatismo vertebromedular, infección del tracto urinario</td>
<td>1</td>
</tr>
<tr>
<td>Schock séptico, foco pulmonar</td>
<td>1</td>
</tr>
<tr>
<td>Neutropenia febril</td>
<td>1</td>
</tr>
<tr>
<td>Trastorno de coagulación, sepsis foco respiratorio</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Hospital Edgardo Rebagliati Martins. 2003.

C. Nutrientes Enterales utilizados por los pacientes monitorizados:

El **Grafico N°2** muestra la distribución de acuerdo al nutriente enteral administrado a los pacientes que recibían medicación y nutrición enteral total por sonda nasoentérica.

Gráfico N° 1: DISTRIBUCIÓN DE LOS NUTRIENTES ENTERALES EN PACIENTES QUE RECIBEN EDICACIÓN POR SONDA NASOENTÉRICA, HNERM - 2003

Fuente: Hospital Edgardo Rebagliati Martins. 2003.

D. Sonda Nasoentérica utilizada por los pacientes monitorizados:

El **Grafico N°2** muestra el tipo de sonda requerida de acuerdo a la patología de los pacientes monitorizados durante el periodo de seguimiento.
Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total,

Gráfico Nº 2: Distribución del tipo de sonda para la administración de los Nutrientes enterales y Medicamentos HNERM - 2003

TABLA N°3: MEDICAMENTOS ADMINISTRADOS POR SONDA NASOENTÉRICA EN PACIENTES RECIBEN NUTRICIÓN ENTERAL TOTAL. HNERM. 2003.
<table>
<thead>
<tr>
<th>NOMBRE GENÉRICO</th>
<th>F. FARMACÉUTICA</th>
<th>LABORATORIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Acido Fólico 0.5mg</td>
<td>Tabletas</td>
<td>A</td>
</tr>
<tr>
<td>2. Alprazolam 0.5mg</td>
<td>Tabletas</td>
<td>A</td>
</tr>
<tr>
<td>3. Captopril 25mg</td>
<td>Tabletas</td>
<td>B</td>
</tr>
<tr>
<td>4. Ciprofloxacino 500mg</td>
<td>Tabletas</td>
<td>C</td>
</tr>
<tr>
<td>5. Clonazepam 2mg</td>
<td>Tabletas</td>
<td>D</td>
</tr>
<tr>
<td>6. Clorfénamina 4mg</td>
<td>Tabletas</td>
<td>A</td>
</tr>
<tr>
<td>7. Doxiciclina 100mg</td>
<td>Tabletas</td>
<td>E</td>
</tr>
<tr>
<td>8. Espironolactona 25mg</td>
<td>Tabletas</td>
<td>D</td>
</tr>
<tr>
<td>9. Fenazopiridina 100mg</td>
<td>Tabletas</td>
<td>B</td>
</tr>
<tr>
<td>10. Fenitoína 100mg</td>
<td>Cápsulas</td>
<td>B</td>
</tr>
<tr>
<td>11. Fluconazol 50mg</td>
<td>Cápsulas</td>
<td>E</td>
</tr>
<tr>
<td>12. Fluoxetina 20mg</td>
<td>Tabletas</td>
<td>F</td>
</tr>
<tr>
<td>13. Furosemida 40mg</td>
<td>Tabletas</td>
<td>B</td>
</tr>
<tr>
<td>14. Ibuprofeno 400mg</td>
<td>Tabletas</td>
<td>B</td>
</tr>
<tr>
<td>15. Isosorbide 10mg</td>
<td>Tabletas</td>
<td>B</td>
</tr>
<tr>
<td>16. Levodopa – carbidopa 250–25mg</td>
<td>Tabletas</td>
<td>D</td>
</tr>
<tr>
<td>17. Levotiroxina 0.5mg</td>
<td>Tabletas</td>
<td>D</td>
</tr>
<tr>
<td>18. Metildopa 250mg</td>
<td>Tabletas</td>
<td>G</td>
</tr>
<tr>
<td>19. Metoclopramida 10mg</td>
<td>Tabletas</td>
<td>B</td>
</tr>
<tr>
<td>20. Metronidazol 500mg</td>
<td>Tabletas</td>
<td>E</td>
</tr>
<tr>
<td>21. Micofenolato 250mg</td>
<td>Cápsulas</td>
<td>H</td>
</tr>
<tr>
<td>22. Nifedipino 10mg</td>
<td>Tabletas</td>
<td>B</td>
</tr>
<tr>
<td>23. Nimodipino 30mg</td>
<td>Tabletas</td>
<td>I</td>
</tr>
<tr>
<td>24. Norfloxacino 400mg</td>
<td>Tabletas</td>
<td>B</td>
</tr>
<tr>
<td>25. Omeprazol 20mg</td>
<td>Cápsulas</td>
<td>D</td>
</tr>
<tr>
<td>26. Paracetamol 500mg</td>
<td>Tabletas</td>
<td>E</td>
</tr>
<tr>
<td>27. Prednisona 5mg</td>
<td>Tabletas</td>
<td>C</td>
</tr>
<tr>
<td>28. Ranitidina 300mg</td>
<td>Tabletas</td>
<td>E</td>
</tr>
<tr>
<td>29. Sulfato Ferroso 60mg</td>
<td>Tabletas</td>
<td>B</td>
</tr>
<tr>
<td>30. Tiamina 100mg</td>
<td>Tabletas</td>
<td>E</td>
</tr>
<tr>
<td>31. Verapamilo 80mg</td>
<td>Tabletas</td>
<td>D</td>
</tr>
<tr>
<td>32. Warfarina 5mg</td>
<td>Tabletas</td>
<td>D</td>
</tr>
</tbody>
</table>

E. Medicamentos administrados en pacientes que recibían Osmolite HN por sonda nasoentérica:

El cuadro N°3 muestra los principales medicamentos que se administraban conjuntamente con Osmolite HN a través de sonda nasoentérica a los pacientes en seguimiento.
Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total.

Cuadro N°3:

Fuente: Hospital Edgardo Rebagliati Martins. 2003.

F. Medicamentos administrados en pacientes que recibían Survimed por sonda nasoentérica:

El cuadro N°4 muestra los principales medicamentos que se administraban conjuntamente con Survimed a través de sonda nasoentérica a los pacientes en seguimiento.

Cuadro N°4:

Fuente: Hospital Edgardo Rebagliati Martins. 2003.

G. Medicamentos administrados en pacientes que recibían Nepro por sonda nasoentérica:

El cuadro N°5 muestra los principales medicamentos que se administraban conjuntamente con Nepro a través de sonda nasoentérica a los pacientes en seguimiento.

Cuadro N°5:

Fuente: Hospital Edgardo Rebagliati Martins. 2003.

H. Medicamentos administrados en pacientes que recibían Pulmocare por sonda nasoentérica:

El cuadro N°6 muestra los principales medicamentos que se administraban conjuntamente con Pulmocare a través de sonda nasoentérica a los pacientes en seguimiento.
V. RESULTADOS

Cuadro N°6:

J. Medicamentos seleccionados luego del periodo de seguimiento:

El cuadro N°7 muestra los medicamentos seleccionados luego del periodo de seguimiento; indicándose los medicamentos, el nutriente, la vía de administración y el tipo de sonda a utilizar para la replicación In Vitro.

Cuadro N°7:

ESTUDIO “IN VITRO”

Metodología: Prospectiva y experimental.

Viscosidad:

Se observó que presentaban mayor grado de viscosidad la suspensión de Clorfenamina con 9.42cps y la Levotiroxina con 6.51cps; y con respecto a su valor medio para la condición suspensión medicamentosa de 5.45cps.

Luego de la adición del NET (9.42cps) en la condición 300 – 250 (mL suspensión medicamentosa – mL NET), se observó que la formación de gránulos densos que se forno con la adición de Ciprofloxacino condicionó a que se cambien el número de spin del 1 al 2, reportando el mayor grado de viscosidad para esta condición con 21cps, seguido del Omeprazol con 9.31cps; con respecto a su valor medio de 7.78cps.

Para la condición 300 – 300 (mL suspensión medicamentosa – mL NET), se observó que el Ciprofloxacino presentó el mayor grado de viscosidad con 26.1cps, seguido del Omeprazol con 12.1cps; con respecto a su valor medio de 9.34cps.

A nivel grupal se observó que la adición del NET a la suspensión medicamentosa ocasiona un aumento en el grado de viscosidad de la suspensión medicamentosa, de tal manera que existe relación lineal entre las variables suspensión medicamentosa sin y con NET 300mL-250mL (mL suspensión medicamentosa – mL NET) con un F=0.57, α:0.05 y 300mL-300mL (mL suspensión medicamentosa – mL NET) con un F=0.89, α:0.05.

Velocidad de caída:

Esta variable esta muy relacionada a la viscosidad lo cual se confirma con el tiempo que demora en pasar por la sonda nasogástrica.
Se observó la formación de un sedimento grueso blanco de Ranitidina, que ocasionó su obstrucción a su paso por la sonda; además tuvo dificultad pero sin obstrucción el Clonazepam, el cual con el paso de la nutriente enteral total no ocasiona problemas; para el caso del Ciprofloxacino se observó que en presencia del NET produce gránulos gruesos que obstruyen la sonda; también se han reportado dificultades para el caso de Fenazopiridina por esta vía, la cual no solo colorea de amarillo toda la sonda, sino que en presencia del NET forma unos pequeños gránulos que dificultan su paso por la sonda. Se determinó que el valor promedio de esta variable para las suspensiones medicamentosas fue de 6”28 la cual aumentó en presencia del NET siendo de 12’01 (α:0.05).

Osmolalidad:

Todas las suspensiones medicamentosas aumentaron su osmolalidad en presencia del NET en los tiempos de infusión de 12, 36 y 60 minutos, no alcanzando valores máximos de 200mOsm/Kg con respecto a su valor medio de 186mOsm/Kg a los 60 minutos. Se determinó la relación lineal entre las variables suspensión medicamentosa y con el nutriente enteral con un F = 8.15; α:0.05.

De las suspensiones acuosas de los medicamentos el Ciprofloxacino es el que presentó mayor grado de osmolalidad (111mOsm/Kg.), seguido muy lejos por la Fenitoína (45mOsm/Kg.).

Recuperación de Fenitoína:

Se observó que el mayor grado de unión de la Fenitoína a las proteínas del NET se observó a la 1:30 horas (91.33% unido), y a las 3:00 horas (89.10%) de exposición con una bomba de infusión; y conforme paso el tiempo de estudio esta unión va disminuyendo de forma reversible. Siendo el porcentaje de unión de Fenitoína recuperada durante las 4 primeras horas el 68.62% (α:0.05).

pH:

Se observó que la adición del nutriente enteral a las suspensiones medicamentosas modifica la acidez o la alcalinidad de estas; tal como se observó con la suspensión del Omeprazol el cual disminuyó su acidez de 5.89 a 6.83, para el caso de la suspensión de Fenitoína se observó una disminución de la alcalinidad de 10.07 a 8.33 con respecto a su valor medio de 5.78 (α:0.05).

Luego de la adición del aspirado gástrico y el NET se evidenció que la variable pH en el caso de la suspensión de Ranitidina disminuye su acidez de 5.11 a 6.20 a pesar de la condición que impone el aspirado gástrico; para el caso de la suspensión de Fenitoína se evidenció una disminución de su alcalinidad de 10.07 a 7.92 (α:0.05).
VI. ANÁLISIS ESTADÍSTICO

PROCESAMIENTO DE DATOS:

Los datos se procesaron en el paquete estadístico SPSS versión 11.10 para Windows para obtener los cuadros estadísticos anexos, construyéndose tablas descriptivas para las variables en estudio. Estos últimos exponen el resultado de la información que se recopiló y se utilizó para hacer el análisis de los datos. Se utilizó el programa Excel para la presentación de las tablas y los gráficos finales.

Para efectos del análisis se utilizaron como variables de control:

- Viscosidad.
- Velocidad de Caída.
- Osmolaridad.
- pH.
- Unión a proteínas del Nutriente enteral total.

Para el procesamiento de los datos se procedió de la siguiente manera:

- Se realizó pruebas de Pearson para correlacionar las variables.
- Se realizó pruebas de T-student para hallar diferencias entre las medias iniciales y las medias máximas de variación de cada parámetro.
- Se realizó el análisis de varianza para cada variable.
Se realizó el análisis de regresión lineal, con su respectiva ecuación de regresión.

VISCOSIDAD:

TABLA N°4: Medidas estadísticas de posición y variabilidad de la variable viscosidad de la suspensión medicamentosa y NET en la fracción 300 – 250 y 300 – 300 (mL Suspensión medicamentosa – mL NET).

Los datos de la tabla anterior muestran que los valores medios para la variable suspensión medicamentosa es de 5.45cps, luego de la exposición con NET a 300 – 250 (mL Suspensión medicamentosa – mL NET) el valor promedio es de 7.78cps y a 300 – 300 (mL Suspensión medicamentosa – mL NET) el valor promedio es de 9.34cps.

TABLA N°5: Intervalo de confianza para la diferencia de medias de la variable viscosidad para la suspensión medicamentosa sin y con NET en la fracción 300 – 250 y 300 – 300 (mL Suspensión medicamentosa – mL NET).

Al evaluar los datos del cuadro anterior se observó el intervalo de confianza para la diferencia de medias esta dentro del intervalo de confianza con un 95%.

TABLA N°6: Análisis de varianza para la suspensión medicamentosa sin y con NET 300 – 250 (mL suspensión medicamentosa – mL NET)

Ho: Existe relación lineal entre las variables.

Hi: No existe relación lineal entre las variables.

Del ANOVA, se acepta Ho; es decir existe relación lineal entre las variables de suspensión medicamentosa sin y con NET 250 – 300 (mL suspensión medicamentosa – mL NET) con el estadístico de $F = 0.57$ y $\alpha = 0.05$
VI. ANÁLISIS ESTADÍSTICO

TABLA N°7: Análisis de varianza para la suspensión medicamentosa sin y con NET 300 – 300 (mL suspensión medicamentosa – mL NET)

Ho: Existe relación lineal entre las variables.
Hi: No existe relación lineal entre las variables.

El ANOVA indica que se acepta Ho, es decir que existe relación lineal entre las variables suspensión medicamentosa sin y con NET 300 – 300 (mL suspensión medicamentosa – mL NET) con el estadístico de F = 0.089 y con un nivel de significancia al 95%.

OSMOLALIDAD:

TABLA N°8: Medidas estadísticas de posición y variabilidad de la variable Osmolaridad para la suspensión medicamentosa con infusión del NET a los 0, 12, 36 y 60 min.

Los datos de la tabla anterior muestran que los valores medios para la suspensión medicamentosa es de 25.66mosm/Kg, luego de 12min de infusión del NET (5mL NET) el valor promedio es de 77.13mosm/Kg, a los 36min de infusión (15mL NET) el valor promedio es de 133mosm/Kg. Y a los 60min de infusión (25mL NET) el valor promedio es de 186mosm/Kg.

TABLA N°9: Intervalos de confianza para la diferencia de medias de la variable osmolaridad para la suspensión medicamentosa con infusión del NET a los 0, 12, 36 y 60 minutos.

Al evaluar los datos de la investigación se determinó que el intervalo de confianza para la diferencia de medias esta dentro del intervalo de confianza con un 95%.
Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total,

TABLA N°10: Intervalo de confianza para la diferencia de medias para la variable osmolalidad (correlación entre grupos)

De la investigación se determinó que el intervalo de confianza para la diferencia de medias está dentro del intervalo de confianza con un 95%. Tal como lo muestra la tabla; como para el caso de la suspensión medicamentosa con 5mL del NET, en la cual se observan los límites extremos de –60.10 y –42.83 con un intervalo de confianza al 95%. Se forma similar para las otras variables.

TABLA N°11: Análisis de varianza de osmolalidad para las variables suspensión medicamentosa y NET.

H₀: Existe relación lineal entre las variables.

H₁: No existe relación lineal entre las variables.

Del ANOVA, se acepta H₀, es decir existe relación lineal entre las variables suspensión medicamentosa y NET con la prueba F = 8.15 y con un nivel de confianza al 95%.

TABLA N°12: Análisis de varianza de osmolalidad para la suspensión medicamentosa con la infusión del NET a los 0, 12, 36 y 60min.

H₀: Existe relación lineal entre las variables.

H₁: No existe relación lineal entre las variables.
VI. ANÁLISIS ESTADÍSTICO

Tabla N°13.1: Valores promedios de la variable pH para la suspensión medicamentosa

Del ANOVA, se rechaza Ho, es decir no existe relación lineal entre las variables suspensión medicamentosa con infusión del NET a los 0, 12, 36 y 60min con los estadísticos de F = 16.44 y α = 0.05.

PH:

De la investigación se determinó que el valor medio de la variable pH de suspensión medicamentosa es de 5.787, observándose valores extremos muy ácidos para el caso del Captopril, Levotioxina y Fenazopiridina; y valores alcalinos para el caso de Fenitoína.

Tabla N°13.2: Valores promedios de la variable pH para el aspirado gástrico de los pacientes que recibieron NET y medicamentos por sonda nasogástrica.

De la investigación se determinó que el valor medio de la variable pH de los aspirados gástricos es de 3.112

Suspensión acuosa + NET:

TABLA N°14.1: Medidas estadísticas de la variable pH para la suspensión medicamentosa con NET.
Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total,

TABLA N°14.2: Medidas estadísticas de la variable pH para la suspensión medicamentosa con NET.

De la investigación de determino los siguientes resultados para la condición suspensión medicamentosa con NET:

Omeprazol: el pH para la suspensión medicamentosa con NET muestra un valor promedio de 6.839, es decir el NET disminuyó la acidez de la suspensión medicamentosa que era de 5.89.

Fenitoina: el pH para la suspensión medicamentosa con NET muestra un valor promedio de 8.331, es decir el NET disminuyó la alcalinidad de la suspensión medicamentosa que era de 10.07.

Para el caso de los siguientes medicamentos la tabla muestra la misma variación del pH de la suspensión medicamentosa con NET.

TABLA N°15: Intervalo de confianza para la diferencia de medias de la variable pH para la condición suspensión medicamentosa con NET.

De la investigación se determino que los intervalos de confianza para las diferencias de medias están dentro del intervalo de confianza con un 95%.

Suspensión acuosa + NET + Aspirado Gástrico:
VI. ANÁLISIS ESTADÍSTICO

TABLA N°16.1: Medidas estadísticas de la variable pH para la condición suspensión medicamentosa, con NET y el aspirado gástrico.

TABLA N°16.2: Análisis estadístico de la prueba del pH para la condición suspensión medicamentosa, con NET y el aspirado gástrico.

De la investigación se determinó los siguientes resultados para la condición suspensión medicamentosa con NET y aspirado gástrico:

Fenitoína: el pH para la suspensión medicamentosa con NET y aspirado gástrico muestra un valor promedio de 7.928, es decir el NET disminuyó el pH de la suspensión medicamentosa que era de 10.07. A pesar de la condición que impone el aspirado gástrico.

Para el caso de los siguientes medicamentos la tabla muestra la variación del pH de la suspensión medicamentosa con NET.

TABLA N°17: Intervalo de confianza para la diferencia de medias de la variable pH para la condición suspensión medicamentosa con NET y el aspirado gástrico

Estudio in vitro de los cambios físicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total.

Existe un alto grado de relación significativa a un nivel de p<0.05; del valor del pH para la suspensión medicamentosa, con NET y aspirado gástrico. Observándose que los intervalos de confianza para las diferencias de medias esta dentro del intervalo de confianza con un 95%.

TABLA N° 18: Valores medios de la variable pH de los medicamentos en estudio

<table>
<thead>
<tr>
<th>Medicamento</th>
<th>Suspensión medicamentosa</th>
<th>Suspensión medicamentosa + NET</th>
<th>Suspensión medicamentosa + NET + Aspirado gástrico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranitidina</td>
<td>5.110</td>
<td>6.718</td>
<td>6.203</td>
</tr>
<tr>
<td>Omeprazol</td>
<td>5.891</td>
<td>6.839</td>
<td>6.252</td>
</tr>
<tr>
<td>Fenitoína</td>
<td>10.074</td>
<td>8.331</td>
<td>7.928</td>
</tr>
<tr>
<td>Isosorbie</td>
<td>6.693</td>
<td>6.387</td>
<td>5.860</td>
</tr>
<tr>
<td>Levotiroxina</td>
<td>3.153</td>
<td>5.925</td>
<td>5.524</td>
</tr>
<tr>
<td>Captopril</td>
<td>2.933</td>
<td>6.100</td>
<td>5.836</td>
</tr>
<tr>
<td>Clorfenamina</td>
<td>5.276</td>
<td>6.406</td>
<td>5.740</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>7.042</td>
<td>6.432</td>
<td>6.034</td>
</tr>
<tr>
<td>Metronidazol</td>
<td>5.758</td>
<td>6.379</td>
<td>6.036</td>
</tr>
<tr>
<td>Fenazopiridina</td>
<td>3.171</td>
<td>5.789</td>
<td>5.569</td>
</tr>
<tr>
<td>Ciprofloxacino</td>
<td>4.084</td>
<td>5.211</td>
<td>5.128</td>
</tr>
<tr>
<td>Fluconazol</td>
<td>7.474</td>
<td>6.412</td>
<td>6.031</td>
</tr>
<tr>
<td>Warfarina</td>
<td>6.865</td>
<td>6.440</td>
<td>5.663</td>
</tr>
<tr>
<td>Fluoxetina</td>
<td>6.349</td>
<td>6.389</td>
<td>6.037</td>
</tr>
<tr>
<td>Prednisona</td>
<td>6.936</td>
<td>6.373</td>
<td>5.668</td>
</tr>
</tbody>
</table>

Fuente: HNERM - 2003. α: 0.05, (*): n =18

ADSORCIÓN DE LA FENITOÍNA A LAS PROTEÍNAS DEL NET:

TABLA N°19: Medidas estadísticas de la variable recuperación de Fenitoína

El valor promedio de Fenitoína recuperada durante el periodo de estudio fue de 0.54mg/ml de una dosis de 1.73mg/ml, lo que indica que durante las primeras 4 horas, el % promedio de unión del medicamento Fenitoína a las proteínas del Osmolite es de 68.62%.

TABLA N°20: Intervalo de confianza para la diferencia de medias de la variable
Recuperación de Fenitoína

Del cuadro anterior se observa que la prueba T indica que las medias para las condiciones se encuentran en el intervalo de confianza con un 95%, lo cual indica que las concentraciones de Fenitoína recuperada y no recuperada están relacionadas con un α = 0.05, para el caso de los porcentajes de Fenitoína recuperada y no recuperada también están relacionadas a un nivel de α = 0.05.

TABLA N°21: Análisis de varianza de la concentración de Fenitoína recuperada tras su exposición con NET.

Ho: Existe relación lineal entre las variables.
Hi: No existe relación lineal entre las variables.

Del ANOVA, se acepta la Ho; es decir existe relación lineal entre las variables de concentración de recuperación de la Fenitoína tras su exposición con NET, con los estadísticos de F = 2.62 y con un nivel de confianza al 95%.

TABLA N°22: Análisis de varianza de la concentración de Fenitoína no recuperada tras su exposición con NET.

Ho: Existe relación lineal entre las variables.
Hi: No existe relación lineal entre las variables.

Del ANOVA, se acepta la Ho; es decir existe relación lineal entre las variables de concentración de no recuperación de la Fenitoína tras su exposición con NET, con una prueba de F = 2.29 y con un nivel de confianza al 95%.

VELOCIDAD DE CAIDA:
TABLA N°23: Medidas estadísticas de la variable velocidad de caída en segundos.

De la investigación se determinó que el valor promedio de velocidad de caída para la suspensión medicamentosa es de 6"28 teniendo un rango de 7"73 - 6"23; y para la condición de suspensión medicamentosa con NET es de 12"01 con un rango de 14"54 – 11"54.

TABLA N°24: Intervalo de confianza para la diferencia de medias de la variable velocidad de caída para la suspensión medicamentosa sin y con NET.

De la investigación se determinó que la diferencia de medias de la variable velocidad de caída para la suspensión medicamentosa sin y con NET esta dentro del intervalo de confianza con un 95%.

GRAFICA N° 3: Recta de Regresión lineal para la variable viscosidad de las suspensiones medicamentosas con NET.

El grafico de dispersión, indica que los valores de la variable se encuentran cercanos a la recta de regresión lineal.
GRAFICA N° 4: Tendencia normal de la variable osmolalidad para la suspensión medicamentosa

El grafico muestra la tendencia normal de los valores de la variable osmolalidad de la suspensión medicamentosa con una media de 0.00 y una desviación estándar de 0.89.

GRAFICA N°5: Recta de Regresión lineal para la variable osmolalidad de las suspensiones medicamentosas.

El grafico de dispersión, indica que los valores de la variable se encuentran cercanos a la recta de regresión.

MODELO DE REGRESIÓN LINEAL SIMPLE

\[Y = -0.53 + 1.0159X_i \]

\[R = 70\% \]

fig006.jpg
fig006a.jpg

El grafico muestra que la curva más cercana a los valores de la variable osmolalidad
de las suspensiones medicamentosas con NET a los 12 minutos es lineal.

MODELO DE REGRESIÓN LINEAL

\[Y = -126.9 + 1.1468X_i \]

\[R = 61\% \]

GRAFICA N°7: Curva de regresión lineal, cuadrática y cúbica para la variable osmolalidad de las suspensiones medicamentosas con NET a los 36 minutos.

El grafico muestra que la curva más cercana a los valores de la variable osmolalidad de las suspensiones medicamentosas con NET a los 36 minutos es lineal.

MODELO DE REGRESIÓN LINEAL

\[Y = -161.2 + 1.0827X_i \]

\[R = 42\% \]

GRAFICA N°8: Curva de regresión lineal, cuadrática y cúbica para la variable osmolalidad de las suspensiones medicamentosas con NET a los 60 minutos.

El grafico muestra que la curva más cercana a los valores de la variable osmolalidad de las suspensiones medicamentosas con NET a los 60 minutos es lineal.
GRAFICA N°9: Recta de regresión lineal para la variable recuperación de fenitoína de las suspensiones medicamentosas.

La recta de regresión muestra que los valores de la variable se encuentran cercanos a la recta de regresión y con una mínima variación.

GRAFICA N°10: Tendencia normal de la variable concentración de la Fenitoína recuperada de las suspensiones medicamentosas.

El gráfico muestra la tendencia normal de los valores de la variable recuperación de Fenitoína de las suspensiones medicamentosas con una media de 0.54 y una desviación estándar de 0.61.
GRAFICA N°11: Tendencia normal de la variable concentración de la fenitoína no recuperada de las suspensiones medicamentosas.

El grafico muestra la tendencia normal de los valores de la variable concentración de Fenitoína no recuperada de las suspensiones medicamentosas con una media de 1.23 y una desviación estándar de 0.51.

GRAFICA N°12: Recta de regresión lineal para la variable recuperación de fenitoína de las suspensiones medicamentosas.

La recta de regresión muestra que los valores de la variable se encuentran cercanos a la recta de regresión lineal y con una mínima variación.

GRAFICA N°13: Tendencia de la variable Fenitoína recuperada y no recuperada durante
VI. ANÁLISIS ESTADÍSTICO

las primeras 4 horas; tras incubación a 25°C con NET.

El gráfico muestra la tendencia de los valores de la variable Fenitoína recuperada y no recuperada de las suspensiones medicamentosas dentro de las primeras 4 horas de exposición, observándose que a partir de las primeras 3 horas la unión de la Fenitoína a las proteínas del NET, se inicia el proceso inverso es decir a las 3:00 horas se encuentra el 0.18mg/ml y a 4: 00 horas se encuentra el 0.42mg/ml de una dosis inicial de 1.73mg/ml.

GRAFICA N°14: Tendencia porcentual de la variable Fenitoína recuperada y no recuperada durante las primeras 4 horas; tras incubación a 25°C con NET.

El gráfico muestra la tendencia porcentual de los valores de la variable Fenitoína recuperada y no recuperada de las suspensiones medicamentosas dentro de las primeras 4 horas de exposición, observándose que a partir de las primeras 3 horas la unión de la Fenitoína a las proteínas del NET, se inicia el proceso inverso es decir a las 3:00 horas se encuentra el 10.4% y a 4: 00 horas se encuentra el 20.79%.
Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total,
VII. DISCUSIÓN

En el presente trabajo, realizado en el Hospital Edgardo Rebagliati Martíns en los diversos servicios en los cuales se prescribió la utilización de nutrición enteral total con medicación por sonda nasogástrica, de 191 pacientes, el 54.97% recibieron nutrición enteral total en el periodo de seguimiento. Siendo el 52.38% los que recibieron Osmolite HN y medicamentos por sonda nasogástrica.

Martínez Vázquez M.J en su publicación “Estudio nutricional en pacientes geriátricos con nutrición enteral ambulatoria, correlación entre patología de base, aporte nutricional y tratamiento farmacológico” encontró que en este tipo de pacientes la administración de nutrientes por sonda nasogástrica fue del 55.2%, siendo la media de medicamentos administrados por esta vía fue del 64%, donde la interacción más frecuente (29.6%) fue el de la Digoxina con las fibras de los nutrientes; a su vez reportó la administración inadecuada del Omeprazol y de diversos antiparkinsonianos. (54)

En la actualidad, la alta frecuencia de problemas producto de la administración de medicamentos por sonda nasogástrica ocasiona que se adopten múltiples medidas con el fin de prevenir tales complicaciones.

En el presente estudio se muestra que en los centros hospitalarios no se realiza una adecuada metodología para la administración de medicamentos por sonda nasogástrica en conjunto con los nutrientes entérales.

En el caso de principios activos formulados bajo formas farmacéuticas sólidas se adopta a la molienda y trituración como método para poder incorporarlas a la nutrición
enteral total, esta forma es inadecuada no solo porque puede alterar las propiedades fisicoquímicas y farmacocinéticas de los medicamentos sino que puede interferir con la nutrición enteral. (9)

En la practica diaria se observa que existen tiempos considerables de retraso en la administración del nutriente por sonda nasogástrica cuando se administraba con medicamentos y algunas veces la sonda se obstruye debido a su pequeño calibre o a la viscosidad excesiva de la preparación. Por este motivo, conviene no utilizar estas combinaciones para evitar complicaciones como incremento del tiempo de administración tanto del nutriente y como del medicamento; lo cual es menos fisiológica y más molesta para los pacientes. (51)

De acuerdo a lo mencionado, para el caso de la viscosidad, se observó que las suspensiones medicamentosas presentaban un valor medio de viscosidad de 5.45cps (s=1.58), siendo los que presentaban mayor grado de viscosidad la suspensión de Clorfenamina con 9.42cps y de Levothyroxina con 6.51cps.

Luego de la adición del nutriente enteral total (9.42cps) se observó la formación de gránulos densos de la suspensión de Ciprofloxacino, lo cual condiciono al mayor grado de viscosidad 21cps (300mL suspensión-250mL nutriente enteral total) y de 26.1cps (300mL suspensión-300mL nutriente enteral total). Para el caso del Omeprazol con 9.31cps con un valor medio de 7.78cps (s=3.92) para la condición 300mL suspensión-250mL nutriente enteral total, y de 12.1cps con un valor medio de 9.34cps (s=5.05) para la condición 300mL suspensión-300mL nutriente enteral total. Además el ANOVA muestra que existe relación lineal entre las variables para la condición señalada con un F=0.57 y α=0.05; y de 12.1cps con un valor medio de 9.34cps (s=5.05) para la condición 300mL suspensión-300mL nutriente enteral total. Además el ANOVA muestra que existe relación lineal entre las variables para la condición señalada con un F=0.08 y α =0.05.

A nivel grupal se observó que la adición del nutriente enteral total a la suspensión medicamentosa ocasiona un aumentó en el grado de viscosidad de la suspensión medicamentosa. Los valores de viscosidad reportados se encuentran dentro del intervalo apropiado para la generalidad de las suspensiones farmacéuticas. (22)

Existen factores que influyen en este parámetro, tales como la formación de flúculos que produce un sedimento voluminoso, con lo cual aumenta el valor del índice de sedimentación, tal como se observó con Ciprofloxacino y Fenazopiridina, pero se debe tener en cuenta también que el incremento en la viscosidad evita la aglomeración de las partículas, al ofrecer una fuerza opuesta a la gravitacional que causa la sedimentación del sólido, (22) e incrementando el tiempo del pasaje a través de la sonda nasogástrica. (51)

De acuerdo a esto se observó que el valor medio fue de 6"28 (s=1"80) para el caso de las suspensiones medicamentosas, pero de 12"01 (s=3"44) cuando se administró con el nutriente enteral total; además se reporta la formación de un sedimento grueso blanco de Ranitidina que ocasionó la obstrucción durante su paso a través de la sonda; se observó dificultad pero sin obstrucción en el Clonazepam, el cual con el paso de la nutriente enteral total no ocasionaba problemas; para el caso del ciprofloxacino se observó que en presencia del nutriente enteral total, gránulos gruesos que obstruyen la sonda; también se han reportado dificultades en el caso de la Fenazopiridina por esta vía, la cual
no solo colorea de amarillo toda la sonda, sino que en presencia del nutriente enteral total forma pequeños gránulos que dificultan su paso por la sonda.

En el caso de la osmolalidad como se menciono anteriormente esta es una determinante de la tolerancia del organismo a una disolución, es decir cuanto más se aproxime la osmolalidad de la disolución a administrar a la de las secreciones gastrointestinales (100-400 mOsm/Kg), mejor se tolerará. (31)

De acuerdo a esto se pudo observar que todas las suspensiones acuosas de los medicamentos aumentaron su osmolalidad al mezclarse con el nutriente enteral total en los tiempos de infusión de 0, 12, 36 y 60 minutos, mostrando valores medio de 25.66 mOsm/Kg (s=30.24), 77.13 mOsm/Kg (s=25.50), 133.00 mOsm/Kg (s=20.70) y 172.60 mOsm/Kg (s=18.10) respectivamente. No alcanzando los valores máximos de 200mOsm/Kg.

De las suspensiones acuosas de los medicamentos el Ciprofloxacino es el que presentó mayor grado de osmolalidad (111mOsm/Kg.), seguido muy lejos por la Fenitoína (45mOsm/Kg.).

Para el caso de la unión de medicamentos a proteínas, un ejemplo clásico es la Fenitoína que posee una farmacocinética no lineal, dosis dependiente y tiene un estrecho margen terapéutico (10-20mcg/mL); por lo tanto, pequeños cambios en la dosis o en la biodisponibilidad pueden ocasionar cambios desproporcionados en la concentración plasmática. Estudios in vivo e in Vitro han señalado que la Fenitoína se une a la caseína, principal fuente proteica de las formulas enterales. M. P Ortega García utilizando múltiples dietas artificiales para nutrición enteral encontró una retención de Fenitoína a valores próximos del 70% de la concentración teórica, por lo que dicha interacción puede comprometer gravemente su acción terapéutica. La interacción inmediata se da en el contacto, la recuperación disminuye al 43%; sin embargo observa una mayor recuperación a partir de las 6 horas, esto debido a una unión reversible de Fenitoína a las proteínas. (30)

Por lo tanto, entre la Fenitoína y los nutrientes enterales, aunque conocida, aun falta por determinar su mecanismo de acción. En el estudio, se pudo observar que el mayor grado de Unión de la proteína al nutriente enteral total fue del 91.33% (1:30 horas), y del 89.10% (3:00 horas) de exposición con una bomba de infusión; y conforme paso el tiempo de estudio esta unión va disminuyendo. Además muestra que el valor medio de unión de la Fenitoína a las proteínas del nutriente enteral total dentro de las primeras 4 horas de exposición fue del 68.62% (s=35.16) tal como lo ratifica diversos estudios; es decir que de una dosis de 1.73mg/mL tan solo se recuperará un valor medio de 0.54mg/mL (s=0.60) tras las 4 primeras horas de exposición.

La mayoría de los medicamentos son moléculas orgánicas de carácter ácido o básico débil que en función de su pKa y del pH del medio, cambian su proporción en la forma ionizada y la no ionizada, que repercute en su absorción. (10)

Además, la presencia de nutrientes en el estómago origina un aumento del pH del contenido gástrico, desde 1 unidad, cuando esta vacío, hasta 2.5-3.0 unidades. Este cambio puede provocar variaciones en el grado de ionización de las moléculas del medicamento y producir alteraciones en la estabilidad química y solubilización de los
principios activos. Por lo tanto, los fármacos de carácter básico débil se absorben mejor en el estómago cuando se administran con nutrientes. (10)

En adición de medicamentos por vía nasogástrica bajo la forma de suspensiones medicamentosas no parece ser un problema en la administración, pero el hecho de administrar continuamente a estos nutrientes enterales, trae como resultado la pérdida de absorción de los medicamentos o cambios en la alteración fisicoquímicas pudiendo producir también obturaciones en la sonda nasogástrica a pH menores a 4.6 (51)

De las suspensiones medicamentosas utilizadas se observó que el pH de las mismas vario entre 2 y 3 unidades, sabiendo que el valor medio del pH del nutriente enteral total fue de 6.13 y del aspirado gástrico 3.11; y que el pH medio de los medicamentos fue de 5.78, los que tuvieron cambios marcados fueron la Fenitoína que el pH de la suspensión medicamentosa fue de 10.07 y vario a 8.33 (s=0.11) tras administración del nutriente enteral total y luego a 7.92 (s=0.03) luego de administrar aspirado gástrico, Levoriroxina que de un pH de 3.15 cambio a 5.92 (s=0.01) con el nutriente enteral total y luego a 5.52 (s=0.03) luego del aspirado gástrico, Captoprilo que de un pH de 2.93, cambio a 6.10 (s=0.01) luego de administrar el nutriente enteral total y a 5.83 (s=0.03) luego del aspirado gástrico; y Fenazopiridina que de 3.17 paso a 5.78 (s=0.00) luego del nutriente enteral total y a 5.56 (s=0.04) luego del aspirado gástrico.
CONCLUSIONES

- Sin considerar todos los cambios que pueden producirse, es habitual la trituración de las formas farmacéuticas para su administración por sonda nasogástrica.
- Consideramos imprescindible por lo evidenciado que tanto el Ciprofloxacino que forma gránulos densos en presencia del nutriente enteral total, la Fenazopiridina y la Ranitidina presentan dificultades en su paso a través de la sonda nasogástrica porque éste nutriente aumenta la viscosidad y velocidad de caída de estas suspensiones.
- Se reafirma con sus mediciones de osmolalidad los problemas ocasionados por la administración de Ranitidina, Ciprofloxacino y Fenitoína; las cuales no superan a las 200mOsm/Kg, pero sí producen un aumento en sus valores de osmolalidad en comparación con otras suspensiones medicamentosas.
- Se demostró que medicamentos con estrecho margen terapéutico, tal como la Fenitoína que administrado con el nutriente enteral total por sonda nasogástrica produce problemas en su dosificación, pues este medicamento se une de forma reversible a las proteínas del nutriente, lo cual compromete su acción terapéutica.
- Se debe tener presente el pH del medio y de las suspensiones de medicamentos tal como el de Fenitoína que con un pH de 10.07, en presencia del nutriente enteral total y aspirado gástrico varían su pH a 7.92, lo cual podría interferir con la biodisponibilidad del mismo.
Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total,
RECOMENDACIONES

- Los Químicos Farmacéuticos de la unidad de soporte nutricional del HNERM, al tener información tanto sobre el medicamento, nutriente enteral y técnica de administración, deben impulsar la prevención, detección de incompatibilidades y educación del personal de Enfermería.
- Se debe realizar monitorizaciones a los pacientes que reciban medicación y nutrición enteral por sonda nasoentérica para verificar que no tengan dificultades durante el transcurso de su tratamiento.
- Continuar los estudios in Vitro en sus diferentes niveles de administración con el fin de determinar los potenciales problemas causados por la administración de medicamentos y nutrientes.
- Diseñar un protocolo de administración de medicamentos y nutrientes entérales totales por sonda nasoentérica con el fin de evitar las posibles complicaciones que pueden comprometer el soporte nutricional o la eficacia y tolerancia al tratamiento farmacológico.
Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total,
BIBLIOGRAFÍA

E. CATALAN. Oral drugs that should not be crushed. Unidad de cuidados intensivos del Hospital Universitario de ciudad de Jaén. Enfermería Intensiva 2001; 12:146-150.

Noviembre 2003.

MARTINEZ SANZ H. Follow-up of drug administration through nasogastric tube. Servicio de Farmacia del Hospital Universitario Príncipe de Asturias, Nutric Hospital 2000. Nov-Dec; 15(6): 291-301

LARSON C, CAVUTO NJ, FLOCKHART DA, WEINBERG RB. Bioavailability and efficacy of omeprazole given orally and by nasogastric tube. Department of Internal
BIBLIOGRAFÍA

Medicine, Bowman Gray School of Medicine, USA. Dig Dis Sci. 1996 Mar;41(3):475-9.

PEREZ C. Nutrición enteral en el hospital. Revista Rol de Enfermería 1999. 22(5); 385-388.

ARELLANO F.. Formulas de nutrición enteral y su utilización. Revista de Gastroenterología Perú. 1990. 10; 115-120.

PEREZ MATEOS M. Interferencia de los alimentos en la administración oral de los fármacos. Servicio de medicina interna. Hospital general universitario de Alicante. II Curso sobre administración de medicamentos.1996.

www.sefh.es/revistas/vol22/2205257.PDF. Administración de medicamentos por sonda nasogástrica. Febrero 2004

Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total.

Estudio in vitro de los cambios fisicoquímicos que experimentan las formas farmacéuticas sólidas que se administran por sonda nasogástrica en pacientes con nutrición enteral total,
ANEXOS

Consultar en formato impreso