Trastornos temporomandibulares y alteraciones posturales de la columna cervical en personal asistencial del departamento de odontología del Hospital Militar Central

TESIS para optar el Titulo Profesional de: CIRUJANO DENTISTA
AUTOR
Rubén Abdías Limaylla Cecilio
ASESOR Carlos Villafana Mori
LIMA – PERÚ 2007
AGRADECIMIENTOS

RESUMEN

CAPÍTULO I. INTRODUCCIÓN

CAPÍTULO II. MARCO TEÓRICO

2.1. ANTECEDENTES

2.2. BASES TEÓRICAS

2.2.1. ALTERACIONES POSTURALES DE LA COLUMNA VERTEBRAL

2.2.2. TRASTORNOS TEMPOROMANDIBULARES

2.2.3. TRASTORNOS TEMPOROMANDIBULARES Y LA POSTURA CERVICALES

2.3. DEFINICIÓN DE TÉRMINOS

2.4. PLANTEAMIENTO DEL PROBLEMA

2.4.1. ÁREA PROBLEMA

2.4.2. DELIMITACIÓN

2.4.3. FORMULACIÓN

2.5. JUSTIFICACIÓN DEL PROBLEMA

2.5.1. A NIVEL GENERAL

2.5.2. A NIVEL INSTITUCIONAL

2.5.3. A NIVEL LABORAL

2.5.4. A NIVEL PROFESIONAL

2.6. LIMITACIONES DEL PROBLEMA

2.7. OBJETIVOS

2.7.1. OBJETIVO GENERAL

2.7.2. OBJETIVOS ESPECÍFICOS

2.8. HIPÓTESIS

2.8.1. HIPÓTESIS GENERAL
2.9. OPERALIZACIÓN DE VARIABLES . 43

CAPÍTULO III. MATERIALES Y MÉTODOS . 45

3.1. TIPO DE INVESTIGACIÓN . 45

3.2. POBLACIÓN Y MUESTRA . 45
   3.2.1. UNIVERSO . 45
   3.2.2. MUESTRA . 46
   3.2.3. UNIDAD DE ANÁLISIS U OBSERVACIÓN . 46
   3.2.4. TIPO DE MUESTRA . 46
   3.2.5. CRITERIOS DE INCLUSIÓN . 46
   3.2.6. CRITERIOS DE EXCLUSIÓN . 46
   3.2.7. TAMAÑO DE LA MUESTRA. . 47

3.3. MATERIALES . . 47
   3.3.1. RECURSOS. . 47
   3.3.2. FINANCIACIÓN. . 48

3.4. MÉTODOS. . 48
   3.4.1. PROCEDIMIENTOS Y TÉCNICAS. . 48
   3.4.2. RECOLECCIÓN DE DATOS. . 49

CAPÍTULO IV. RESULTADOS . 51
   4.1. DESCRIPCIÓN ESTADÍSTICA. . 51
   4.2. ANÁLISIS ESTADÍSTICO . 58

CAPÍTULO V. DISCUSIÓN . 61

CAPÍTULO VI. CONCLUSIONES . 65

CAPÍTULO VII. RECOMENDACIONES . 67

BIBLIOGRAFÍA . 69

ANEXOS . 75
DEDICATORIA  A mis padres, por darme la vida y Por su eterno apoyo para lograr mis más locos sueños.  A mis hermanos Joel y Nina, por Acompañarme en cada momento regalándome muchas alegrías.  A todos mis amigos, por ayudarme a comprender la vida.
Trastornos temporomandibulares y alteraciones posturales de la columna cervical en personal asistencial del departamento de odontología del Hospital Militar Central
AGRADECIMIENTOS

- Al Dr. Carlos Villafana Mori por su asesoría y apoyo incondicional para la elaboración de la presente investigación.

- Al Dr. Gerson Paredes Coz por su apoyo y orientación en los aspectos metodológicos y estadísticos.

- A todo el Personal asistencial, internos, así como a las diferentes autoridades del departamento de Odontología del Hospital Militar Central cuya colaboración fue esencial para la ejecución de la presente investigación.

- A los Diferentes docentes que revisaron el presente trabajo, apoyándome a través de sus sugerencias y consejos.

Muchas gracias
Trastornos temporomandibulares y alteraciones posturales de la columna cervical en personal asistencial del departamento de odontología del Hospital Militar Central
Se ha realizado un estudio de tipo transversal y descriptivo con el propósito de relacionar los TTM con la postura cervical.

Se seleccionó de manera no probabilística y por conveniencia a 51 personas que laboraban como personal asistencial en el Departamento de Estomatología del Hospital Militar Central cuyas edades se encontraban entre 20 a 40 años y de ambos sexos. Se realizó la anamnesis, examen clínico y radiográfico para evaluar la presencia de TTM y de alteraciones de la postura cervical a través del índice de Krogh Poulsen y del Análisis radiográfico con técnica de Penning respectivamente. Los datos fueron procesados a través de la prueba de Significancia estadística no paramétrica de CHI cuadrado (x²); este análisis estadístico se realizaron utilizando el programa SPSS.

Los resultados indican una prevalencia del 50.9% de TTM, siendo mayor la prevalencia en el grupo masculino 61.5% y fue incrementándose con la edad. No se hallaron diferencias significativas para los trastornos temporomandibulares según la edad ni el sexo.

La prevalencia con posturales cervical anormal fue de 75.5%; destacando la postura cervical rectificada con 51%; esta tendencia se fue similar según la edad y el género. No se hallaron diferencias significativas para la alteración de la postura cervical según la edad ni el sexo.

La frecuencia de postura anormal en pacientes con TTM fue de 73.1%, dentro de los cuales primaba la postura rectificada con 53.8%; mientras que en los pacientes sin TTM con fue de 56% dentro de los cuales postura rectificada obtuvo el mayor porcentaje con 48%. Lo que confirma que no se halló relación significativa entre los trastornos temporomandibulares y las alteraciones posturales de la columna cervical.
Trastornos temporomandibulares y alteraciones posturales de la columna cervical en personal asistencial del departamento de odontología del Hospital Militar Central
CAPÍTULO I. INTRODUCCIÓN.

El estudio de la articulación temporomandibular siempre fue tema de interés para los odontólogos y médicos, por ser una articulación compleja y a la vez la más afectada por problemas funcionales. (35)

Todos los estudios que abordan los TTM evidencia una etiología compleja y multifactorial, las cuales deben de ser comprendidas y entendidas por el odontólogo para su mejor diagnóstico. (2)

Diversas investigaciones explican que en condiciones fisiológicas el raquis cervical condiciona la dinámica del ATM; pudiéndose deducir que en situaciones patológicas también desempeñará un papel decisivo. De acuerdo a esta idea múltiples autores han determinado que los pacientes con TTM presenta una mayor prevalencia de disfunciones cervicales (68); mientras que otros contradicen esta opinión, haciendo que la bibliografía actual sea algo confusa con respecto a este tema (77).

La presente investigación pretende aclarar esta disyuntiva, evaluando la relación existente entre los trastornos temporomandibulares y la postura de la columna cervical.
Trastornos temporomandibulares y alteraciones posturales de la columna cervical en personal asistencial del departamento de odontología del Hospital Militar Central
CAPÍTULO II. MARCO TEÓRICO

2.1. ANTECEDENTES

Tallgren A y col (16) en Estados Unidos, el año 1983 evaluó los cambios en las relaciones de la mandíbula, postura hioidea, y postura de la cabeza en portadores de dentaduras completas. En un grupo de 18 pacientes edéntulos se les confeccionó dentaduras completas inmediatas, examinándose los cambios en la posición del hueso hioideo y la postura cráneocervical en las radiografías cefalométricas al año de uso de la dentadura. Los resultados indicaron que los cambios en la posición del hueso hioideo siguieron en gran parte el patrón de la mandíbula de rotación hacia adelante y hacia arriba debido a la resorción del reborde. Durante este curso la posición hioidea con relación a la columna cervical demostró un significativo incremento. Los cambios hiocevicales, sin embargo, demostraron menos variabilidad que los cambios hioaxilar y hiomandibular. La postura de la cabeza y de la columna cervical no demostró ningún cambio significativo definido durante el período de un año. También se reveló una disminución pronunciada de la inclinación de la mandíbula debido a la reabsorción del reborde que fue asociado a la retroinclinación de la columna cervical y a la disminución del ángulo cráneocervical. Estos cambios posturales se pueden producir como adaptación al cambio inicial marcado en la posición de la mandíbula.

"Programa Cybertesis PERÚ - Derechos son del Autor" 9
Darling DW y col (12) en Estados Unidos en el año 1984, evaluó la relación de la dimensión vertical de reposo con la postura de la cabeza. En este trabajo se evaluaron la postura de la cabeza a través tomas fotográficas; mientras que la dimensión vertical fue evaluada a través de un registro, antes y después de ser tratados a través de una terapia física para mejorar la postura de la cabeza. Se concluyó que el incremento de la dimensión vertical de reposo es influenciado por el ángulo de la cabeza de la columna cervical

Hansson T. y col (1) en 1988 realizaron una revisión bibliográfica, donde analiza la influencia de la columna cervical en la disfunción cráneocervical, afirmando que los desórdenes cráneo mandibulares pueden originar alteraciones funcionales de la columna cervical, así también la postura anormal de la cabeza influye en la función de la columna cervical así como de varias funciones del sistema masticatorio. Recomiendan que se debe obtener información tanto del sistema masticatorio así como del raquis cervical, e integrarlas en un diagnóstico diferencial de la disfunción cráneo mandibular.

Carossa, S. Y Col. (68) en 1993 se evaluó la incidencia de desórdenes craniomandibular en un grupo de pacientes con el disfunción cervical. La muestra fue compuesta por 50 pacientes que se encontraban en tratamiento de la disfunción cervical de la espina dorsal. Cada paciente fue sometido a una examinación médica para investigar la presencia de las mismas o de los síntomas de Disfunción Craneomandibular. Los resultados concluyeron que los pacientes con disfunción del raquis cervical presentan una mayor prevalencia de Disfunciones Temporomandibulares.

Fuentes R. y col (21) en Temuco, Chile en el año 1996 evaluaron la relación ortostática postural del sistema cráneoocervical desde el punto de vista radiológico en adultos jóvenes con la intención de entregar elementos de juicio para su análisis. La muestra se compuso de 60 individuos de edades entre 19 y 24 años, a los que se les realizaron telerradiografías laterales, usando el análisis biomecánico cráneoocervical descrita por Rocabado. Encontraron un 70% de curvatura cervical alterada, indicando que estas alteraciones debían ser tomadas en cuenta al evaluar un paciente con desórdenes cráneo mandibular (DCM) ya que existe una interrelación entre los DCM y las alteraciones funcionales de la columna cervical; concluyeron también, que existía un alto porcentaje de alteración en la estabilidad ortostática de la región cráneoocervical.

Wijer A. y col (69) en el año 1996, evaluó la relación existente entre las disfunciones temporomandibulares y la disfunción cervical de la columna espinal, para esto se examino dos grupos de pacientes; el primero con 111 individuos diagnosticados con disfunción temporomandibular; el segundo grupo con 103 individuos diagnosticados con de Disfunción Cervicales de la espina dorsal. La muestra fue evaluada a través de un cuestionario que reunía los signos y síntomas específicos de ambas disfunciones incluyendo preguntas sobre dolor, síntomas de desórdenes temporomandibular, signos y síntomas acompañantes, factores sicosociales, y salud general, además de una examinación clínica. Los resultados de este estudio no apoyan el concepto teórico que los desórdenes cervicales de la espina dorsal pueden dar lugar a desórdenes temporomandibular.

Miralles R y Col. (14) En Santiago de Chile el año 1997 determinó el efecto del
aumento en la dimensión vertical oclusal por medio de una aparato ortodóntico y su efecto sobre las relaciones craneocervical y postura de la columna cervical. Con este fin se dividieron a treinta niños que presentaban maloclusión en dos grupos de 15 (un grupo estudio y un grupo control). Se tomó radiografías craneocervical laterales para cada niño; luego a los pacientes del grupo estudio se les indicó que usen un aparato ortodóntico para corregir la mordida cruzada. Después de cuatro meses de usar el aparato se volvió a tomar las placas craneocervical laterales en ambos grupos. Encontrándose una postura cervical adelantada en los pacientes de grupo de estudio.

Huggare J.(19) En 1998, realizó una revisión bibliográfica de diferentes estudios que relacionan la alteración postural como factor etiológico de las variaciones del desarrollo dentofacial y de la maloclusiones. La revisión concluyó que existe evidencia para el predominio de la maloclusión Clase II de Angle asociado a la hiperlordosis cervical y un riesgo frecuente de mordida cruzada lateral en los niños afectados por escoliosis y torticolis; también se encontró documentación convincente de asociaciones entre la apretadura anterior y la postura de la cabeza.

Paulo Sandoval V y col (18) en Temuco, Chile en el año 1999, analizó la curvatura cervical de adultos jóvenes para poder correlacionarlas con otras variables morfológicas craneofaciales que indiquen presencia de asociación entre ellos. Realizó el estudio en 46 adultos jóvenes de ambos generos, con una edad promedio de 19 años y 6 meses. Se hizo el examen clínico, así como telerradiografías de perfil en posición de reposo clínico postural mandibular a cada individuo, se realizaron los trazos de acuerdo al protocolo descrito por Sollow y Tallgren. Obtuvo como resultado una alteración de la curvatura cervical en el 65.0% de los individuos; además determino que la posición adelantada de la cabeza se caracteriza por compensaciones cervicales y no orientaciones de la misma. Así mismo concluyó que la posición adelantada de la cabeza se correlaciona con el biotipo dolicocefalico y alteración del triangulo hioideo.

Fuentes R. Y col (6) En Moscu, Rusia en el año 1999 estudiaron la influencia de la postura corporal en la prevalencia de los trastornos temporomandibulares. Este estudio se realizo en 136 estudiantes y 31 pacientes de la Clínica de la Articulación Temporomandibular de la Universidad de Berlín, con la edad promedio fue de 27 años. Se evaluó clínicamente la musculatura cervical y masticatoria, y la articulación temporomandibular. La posición de los hombros y de la pelvis fue evaluada con un acromiopelvimetro.Se concluyó que las alteraciones de la postura son un factor etiológico de los trastornos temporomandibulares (TTM), afirmando que algunos síntomas de TTM son más frecuentes cuando existe una falta de alineación de las caderas y de los hombros, lo cual se observa principalmente en la sensibilidad muscular.

Ciancaglin R. y col(70) en Segrate, Italia en el año de 1999 evaluaron la asociación del dolor cervical con los síntomas de la disfunción temporomandibular. Para esto se estudió una muestra de 483 sujetos adultos. Los sujetos fueron entrevistadoscon un cuestionario estándar sobre condiciones orales, sintomatología temporomandibular y dolor de cuello. Se uso el índice de Helkimo para evaluar la disfunción temporomandibular, así como una historia del trauma del sistema del masticatorio. El dolor de cuello molesto era experimentado durante el último año en 38.9% del total, y el predominio de quejas era más alto en mujeres que en los hombres (41.7 contra 34.4%).
El predominio creciente con edad (p < 0.005) y era mas perceptible en sujetos con sintomatología de disfunción temporomandibular que los que no (47.4 contra 28.6%, p < 0.0001). Estos resultados confirman que hay una asociación significativa entre el dolor de cuello y la sintomatología temporomandibular.

Knutson GA, y col (71) e 1999 Expuso un caso clínico con el propósito de demostrar que las alteraciones biomecánicas expresadas a través de estudios radiográficos pueden ser el resultado de cambios debido a una disfunción temporomandibular. El caso lo compuso dos pacientes; el primero tenía migraña, y el segundo tenía hipo movilidad mandibular crónica, vértigos, dolor de cabeza, y dolor y rigidez de cuello; ambos fueron evaluados a través de radiografías cervicales antes y después del tratamiento odontológico y quiropráctico que incluyó manipulación cervical, observándose mejoras en ambos casos así como cambios posturales luego de la evaluación radiográfica. Se concluyó que la disfunción Temporomandibular puede causar disfunciones del raquis cervical alto (occipital-atlas) así como cambios biomecánicos musculares y cervicales que pueden hacerse visibles a la examinación radiográfica.

Munhoz, Wagner Cesar (4) en Sao Pablo, Brasil el año 2001 verificó las posibles relaciones entre la postura corporal y disturbios internos de la articulación temporomandibular. Para tal fin realizó una comparación entre 30 individuos portadores de trastornos temporomandibulares y otro grupo formado por 20 individuos sanos. Se utilizaron los siguientes métodos: clínico, fotografías de la postura corporal y análisis de la radiografía de columna cervical en perfil. Encontrando a través del método clínico una mayor curvatura lordótica de la columna cervical. En el grupo control (sin TTM), 79 % presentaron diagnóstico clínico de rectificación de columna cervical, y 10,5 % fue considerada hiperlordótica, mientras que, en el grupo prueba (con TTM), 41,1 % presentaron diagnóstico clínico de rectificación, 37,9 % presentaron curvatura lordótica fisiológica y 20,7 % obtuvieron diagnóstico de hiperlordosis (p=0,03) Después de eso, el grupo de la prueba fue dividido en tres subgrupos según la severidad de los TTM, evaluada por el índice de Helkimo. Estos subgrupos no eran perceptiblemente diferentes, pero el subgrupo con un TTM más severo mostró una tendencia al predominio de hiperlordosis cervical. Los resultados demostraron una tendencia de hiperlordosis cervical para los sujetos con un TTM severo. Sin embargo, se sugiere estudios con un mayor número de sujetos que sufren de TTM severo para corroborar los resultados obtenidos.

Yi, Liu Chiao y Col (15) en Sao Pablo, Brasil el año 2003 verificaron la relación entre la postura corporal global y la hiperactividad de los músculos de la masticación. Se evaluó 53 mujeres las que fueron sometidas a una anamnesis, evaluación clínica de la articulación temporomandibular y evaluación postural, se constató la ausencia de patologías intra-articulares. La muestra fue dividida en dos grupos: un grupo con hiperactividad de los músculos de la masticación y otro sin hiperactividad. Se constató que, en el grupo con hiperactividad muscular que 60% presentaron lordosis cervical aumentada y 68% la no nivelación de los hombros, concluyendo que hubo relación entre la hiperactividad de los músculos de la masticación y la postura corporal (columna cervical), y que las principales alteraciones están localizadas en el tronco superior.

Felice Festa y col (17) En Chieti, Italia en el año 2003 evaluó la asociación entre el ángulo de la lordosis cervical y la longitud mandibular de radiografías craneales laterales
e investigó la relación entre la retrusión mandibular y el ángulo decreciente de la lordosis cervical. Se realizó en 70 mujeres adultas de raza blanca con edad promedio de 27.4 años con clase II esquelética y relación molar clase II, tomándose radiografías craneales laterales en posición postural de la cabeza. Se encontró una correlación negativa entre la lordosis cervical y la longitud mandibular y una correlación positiva entre base craneal anterior y a longitud maxilar.

Henríquez J. y col (9) en Temuco, Chile en el año 2003 evaluaron la relación ortostática postural del sistema cráneocervical desde el punto de vista radiológico en jóvenes mapuches. La muestra se compuso de 45 individuos de edades entre 18 y 24 años definidos como individuos mapuche. Ninguno de ellos presentó disfunción craneomaxilar ni cráneocervical. Se les tomó una teleradiografía lateral, usándose el análisis biomecánico cráneocervical descrita por Rocabado. Se encontró un 80% de curvatura cervical alterada así como las otras 4 variables estudiadas (triangulo hióideo, la distancia entre la base del occipital y el margen superior del tubérculo posterior del atlas, ángulo póstero inferior formado por los planos odontoideo y Mc Gregor). Se concluyó que existía diferencias morfológicas importantes en los valores promedios de las variables estudiadas.

Vieira D. (7) el 2004, realizó una revisión de la literatura que demostró la relación entre la mala postura y las disfunciones temporomandibulares (TTM), concluyéndose que existe una íntima relación entre los TTM y la alteración de la postura corporal ya que hay una interrelación entre los pacientes con TTM y desvíos posturales, como la anteversión de la cabeza, aumento de la lordosis cervical y la no nivelación de los hombros.

Evcik D. y col (20) en Nueva York, Estados Unidos en el año 2004, investigaron la relación entre la disfunción de la articulación temporomandibular y la postura de la cabeza. La muestra la formaron con 30 pacientes con dolor temporomandibular y 30 pacientes sanos, siendo evaluados a través de una examinación física, radiografía cervical y resonancia magnética de la articulación temporomandibular, el rango de movimiento mandibular y cervical, la dimensión vertical mandibular en reposo, parámetros angulares de cabeza y hombros. Concluyeron que la postura alterada causa desequilibrio muscular que se relaciona altamente con la disfunción temporomandibular.

2.2. BASES TEÓRICAS

2.2.1. ALTERACIONES POSTURALES DE LA COLUMNA VERTEBRAL

2.2.1.1. Anatomía de la columna vertebral

La columna vertebral está compuesta por piezas óseas superpuesta;(22) Se extiende desde la base del cráneo hasta la extremidad caudal del tronco. Consta de 33 o 34 vértebras, las cuales según las regiones en que se encuentran se dividen en cervicales,
dorsales, lumbaras, pelvianas (sacras y cocígeas) (23). Existen: 7 vértebras cervicales, 12 vértebras torácicas, 5 lumbaras, 9 (o 10) vértebras pelvianas soldadas entre sí para formar 2 piezas óseas distintas: el sacro y el cóccix (22).

La longitud de la columna varía con la talla del individuo. Es, en término medio de 73 a 75 centímetros en el hombre y de 60 a 65 cm en la mujer. Su longitud disminuye en la vejez, como consecuencia del aplastamiento de los discos intervertebrales que aumentan la concavidad anteroposterior: la cifosis (22).

2.2.1.2. Concepto de postura de la columna vertebral

La postura puede ser descrita como la posición que las diferentes partes del cuerpo tienen unas en relación con otras (1).

La postura ideal se define a aquella, en la que hay un equilibrio entre las estructuras de soporte, envolviendo una cantidad mínima de esfuerzo y sobrecarga con una máxima eficiencia del cuerpo (24).

Como cada parte del cuerpo tiene su centro de gravedad, pueden ser totalizados en un centro de gravedad único. Para mantener esta posición del cuerpo en perfecto equilibrio, la proyección de la vertical trazada desde su centro de gravedad debe estar dentro de la superficie de terreno de los dos pies, o base de sustentación (1) (25).

La postura de cada individuo está determinada por cadenas musculares, facias, ligamentos, estructuras óseas y demás estructuras músculo esqueléticas que poseen solución de continuidad, son interdependientes (26) y se interaccionan entre sí por toda la vida, de acuerdo a sus necesidades y comprenden todo el organismo (25).

2.2.1.3. Métodos de evaluación de la postura

Uno de los métodos de evaluación postural fue descrito por Kendall para determinar posibles alteraciones de la postura corporal. Los pacientes son posicionados en ortostatismo al frente de un espacio cuadrado y, con auxilio de un plomada, la postura es evaluada. En vista lateral el hilo deberá descender inmediatamente al frente del maleolo lateral (Apófisis redondeada del peroné en el lado externo de la articulación del tobillo); en vista anterior entre los maleolos mediales (Apófisis redondeada de la tibia en el lado interno de la articulación del tobillo) y en la vista posterior entre los maleolos mediales. En el individuo normal el hilo pasara por las siguientes estructuras:

Vista lateral: Ligeramente anterior al eje de la articulación de la rodilla, por el cuerpo de las vértebras lumbares, por el proceso odontoideo del axis, meato auditivo externo.

Vista Anterior: Entre las articulaciones de la rodilla, a través de la sinfisis púbica, sobre la cicatriz onfálica, sobre el proceso xifoide, sobre la punta de la nariz.

Vista posterior: Entre las articulaciones de la rodilla, sobre la pedia glutea, por los cuerpos vertebrales, proceso espinoso de C7.

_Cuando se verifica un desvio de estas posiciones tendremos entonces alteraciones de la postura corporal. (26)_

De acuerdo a estos parámetros posturales genereados por Kendall; la columna

"Programa Cybertesis PERÚ - Derechos son del Autor"
vertebral se posicionara ortostaticamente como eje del cuerpo describiendo las siguientes curvaturas fisiológicas:

Las curvaturas anteroposteriores, se cuentan cuatro: la primera cervical, es convexa hacia adelante; la segunda torácica, convexa hacia atrás; la tercera lumbar, es convexa hacia delante, la cuarta la sacra es convexa hacia atrás. Solamente esta última es fija. Las otras se modifican con los movimiento de flexión y extensión.

Estas curvaturas dependen de la forma de los cuerpos vertebrales; de la forma de los discos intervertebrales, de la adaptación del hombre a la postura de pie, del sexo del paciente (ya que en las mujeres se identifica un incremento de la curvatura dorsal), existen variaciones étnicas así como a las provocadas por actividades profesionales y posturales. (22) así como a rutinas de entrenamiento deportivo(25)

Las curvaturas laterales son imperceptibles en el hombre normal, con excepción de una curvatura torácica convexa hacia la izquierda que correspondería al predominio funcional del lado derecho (en los diestros). (22)

2.2.1.4. Origen de la alteración de la postura

En la postura pueden influir factores de tipo interno y externo. Entre los primeros hay que considerar la información proprioceptiva, cuya estimulación es fundamental para la maduración del esquema corporal, la regulación del equilibrio tónico ocular, postural y la ejecución de movimientos simples. Entre los factores externos encontramos los malos hábitos posturales de reposo, de trabajo y de ocio que van a determinar variaciones del centro de gravedad y de las curvaturas de la columna (27)

Características somáticas típicas y el uso no fisiológico de los músculos posturales pueden tener influencia en posturas anormales del cuerpo. Esto puede conducir a la sobrecarga local en músculos y articulaciones. Con el fin de conseguir una posición estable del cuerpo mientras se está de pie, deben tener lugar a continuas compensaciones en todos los músculos posturales del cuerpo, por consiguiente la posición simétrica y ortostática de la posición del cuerpo se ha de contemplar como un proceso dinámico (1)

Según Souchard, una tensión inicial en las cadenas musculares es responsable de la sucesión de tensiones asociadas. Cada vez que un músculo se acorta, aproxima sus extremidades y desplaza los huesos sobre los cuales se inserta, así, las articulaciones se bloquean y el cuerpo se deforma. Por lo tanto, todos los otros músculos que se insertan sobre ese hueso, serán alterados por el desplazamiento que se propagara sobre otros huesos y músculos y así sucesivamente (28).

Neto explica que el origen de las alteraciones posturales puede ser atribuida a la forma de organización de rutinas en las cuales hay tendencia a concentrar sobrecarga en grupos musculares mas solicitados (de acuerdo a la actividad que se realice), desconsiderando la acción de estos sobre los músculos profundos que actúan sobre el mantenimiento de la postura.(25)

*La globalidad del organismo humano hace que con la menor anomalía de las estructuras de soporte conlleva a una desarmonía postural. (26)*
2.2.1.5. Alteraciones posturales de la columna cervical

A. Anatomía de la columna cervical

La columna cervical se encuentra compuesta por 7 vértebras colocadas por encima de las dorsales. En la región del cuello (23), presenta una curvatura cóncava hacia atrás o lordosis cervical. Es la más delgada y móvil. (29) y a la vez la menos estable de la columna. (1)

Las vértebras cervicales son pequeñas en comparación con las vértebras lumbares y dorsales, el cuerpo de estas es de escasa altura, su superficie superior e inferior ofrecen forma de cuadrilátero (23)

De las vértebras cervicales, la primera o atlas, la segunda o axis, y la séptima o prominente difieren considerablemente de las otras. (23)

En el atlas se distinguen un arco anterior y un arco posterior y dos masas laterales, que en conjunto se disponen en forma de anillo. De las masas laterales sobresalen las apófisis transversas correspondientes. Carece de cuerpo y de apófisis espinosa. (30) las masas laterales tienen un carilla articular superior orientada hacia arriba y hacia adentro cóncava en los dos sentidos para los cóndilos del occipital y otra inferior destinada para el axis. (31) Como en todas las vértebras cervicales, en la base de la apófisis transversa existe un agujero por el que pasan la arteria y las venas vertebrales. En la cara posterior del arco anterior hay una carilla articular que corresponde a la apófisis odontoides del axis. El arco posterior es más convexo que el anterior y presenta una eminencia posterior, a manera de una apófisis espinosa rudimentaria (tubérculo posterior) (30), en la cara superior del arco posterior hay un canal, a cada lado, para el paso de la arteria vertebral y el primer nervio cervical. Este canal a veces es cubierto por una banda calcificada, bien visible radiográficamente que lo transforma en un agujero (30)

El axis esta formado como las vértebras cervicales típicas, por un cuerpo y un arco posterior. El cuerpo se prolonga hacia arriba por la apófisis odontoides, eminencia vertical que ocupa el lugar que correspondería al cuerpo del atlas. Constituye la pared ósea anterior del conducto raquídeo a nivel de la primera vértebra. A ambos lados de la implantación de la odontoides, en la cara superior del cuerpo, se hallan las carillas articulares para el atlas. Las apófisis transversas también tienen un agujero para los vasos vertebrales. La apófisis espinosa es horizontal y muy prominente. (30)

En el axis ya existe una apófisis articular inferior que se articula con la apófisis articular superior de la tercera vértebra, constituyendo la primera articulación posterior o interapofisaria. También la cara inferior del cuerpo esta en relación con el disco correspondiente, como en una vértebra típica. (30)

Las restantes vértebras cervicales poseen en la cara superior de los cuerpos vertebrales y en sus extremos laterales dos eminencias de orientación vertical: las apófisis unciformes. En la cara inferior hay dos escotaduras que se corresponden con las apófisis unciforme de la vértebra subyacente. La plataforma inferior es cóncava y forma con la cara anterior un ángulo agudo y dirigido algo hacia abajo, en forma de visera. (30)

Las apófisis transversa tienen en su base un agujero para el paso de la arteria y
venas vertebrales; son cortas y anchas, y en su cara superior presentan una concavidad en la que se sitúan los nervios raquídeos. En ellas destacan también dos tubérculos: uno anterior y otro posterior. Las apófisis espinosas tienen su extremo bifurcado. La correspondiente a la 7ma vértebra es muy prominente y sirve de punto de referencia. (30)

Como en el resto de la columna a cada lado de la vértebra hay dos apófisis articulares, una superior y otra inferior, con las carillas de las articulaciones posteriores o interapofisarias. (30)

B. -Fisiología de la columna cervical

Desde el punto de vista anatómico y funcional, la columna cervical se considera como una unidad; pero en la práctica clínica es conveniente dividirla en dos regiones, por el hecho a que los síndromes originados por la acción de defectos mecánicos, situados por encima del nivel de la vértebra C4, difieren considerablemente de los originarios por debajo de ella: (29) (31)

Raquis Cervical Superior: también conocido como complejo occipito-atlanto-axoideo (1) o como raquis suboccipital(31); se encuentra formado por el atlas y el axis (29); estas piezas esqueléticas están unidas entre sí además con el occipital por una compleja cadena articular con tres ejes y grados de libertad(31);

Raquis Cervical Inferior: se extiende desde la cara inferior del axis hasta la cara superior de la primera vértebra dorsal (29)

Funcionalmente estos dos segmentos del raquis cervical se complementan entre sí para realizar movimientos puros de rotación, de inclinación y de flexoextensión de la cabeza (31)

- Raquis cervical superior

ARTICULACIÓN OCCIPITOATLOIDEA

El raquis cervical superior compone una de las articulaciones más complicadas del cuerpo humano (Articulación occipitoatloidea). Están implicadas en el movimiento de flexión extensión de la cabeza (el gesto de decir si). Un pequeño movimiento lateral es posible en la articulación occipito- C1.(1), esta articulación se encuentra constituida por los cóndilos del occipital y por las facetas de las masas laterales del atlas, y permite principalmente la flexoextensión de la cabeza sobre el cuello que se lleva a cabo mediante el deslizamiento de los cóndilos occipitales sobre las masas laterales del atlas.

En la flexión, los cóndilos occipitales retroceden sobre las masas laterales del atlas(29). Simultáneamente, se puede observar como la concha occipital se aleja del arco posterior del atlas y como este movimiento se acompaña siempre de una flexión en la articulación atloaxoidea. También se ve como el arco posterior del atlas se aleja del arco posterior del axis. La flexión está limitada por la puesta en tensión de las cápsulas y ligamentos posteriores. (31)

En la extensión, los cóndilos occipitales se deslizan hacia delante sobre las masas laterales del atlas. Por su relación convexo cóncava, el atlas tiende a deslizarse hacia atrás pero se ve impedido por la apófisis odontoides del axis, por lo que se eleva y tiende a comprimirse contra el occipital en su arco posterior(29). Simultáneamente la concha
occipital se dirige hacia el arco posterior del atlas y como también existe una extensión de la articulación atloaxoidea, el arco posterior del atlas se aproxima al arco posterior del axis. La extensión se ve limitada por el contacto de estos tres elementos óseos; durante la extensión forzada, el arco posterior del atlas apresado como un cascanueces puede quebrarse. (31)

La amplitud total de la flexoextensión en la articulación occipitoatloidea es de 15°. (31)

El movimiento de inclinación lateral entre el occipital, atlas, axis y la tercera vértebra cervical se puede observar que no existe ningún desplazamiento en la articulación atloaxoidea. La inclinación se da únicamente entre el axis y la tercera vértebra cervical, por una parte, y, por otra, entre el occipital y el atlas. Entre estos dos últimos existe poca amplitud que se traduce por un deslizamiento de los cóndilos occipitales hacia la derecha, en la inclinación, hacia la izquierda y viceversa. En el caso que el paciente realice un inclinación hacia la izquierda, el cóndilo occipital izquierdo se aproxima a la odontoides pero sin contactar con ella, ya que el movimiento está limitado por la tensión de la cápsula occipito atloidea y sobre todo por el ligamento occipitoodontoideo lateral derecho. La inclinación total entre el occipital y la tercera vértebra cervical es de 8°, que se reparten en 3° entre el axis y el C3 y 3° entre el occipital y el atlas. (31)

El movimiento de rotación no existe puro, sino que está asociado a una traslación y a una inclinación; (29). Cuando el occipital gira sobre el atlas, participa un movimiento general de rotación del atlas sobre el axis, que se efectúa en torno al eje vertical que pasa por el centro del odontoides, pero llega un momento en el movimiento en que interviene la tensión de los ligamentos, y en particular la tensión del ligamento occipitoodontoideo lateral que se enrolla alrededor de la odontoides y luego se tensa. Estas tensión va ha desplazar al cóndilo del occipital (hacia la izquierda si la rotación se dirige hacia ese lado). Por lo tanto la rotación hacia la izquierda se acompaña, al mismo tiempo, de un desplazamiento hacia la izquierda de 2 a 3 mm y de una inclinación del occipital hacia la derecha. Por consiguiente no existe una rotación pura, sino una rotación asociada a una traslación y a una inclinación. (31)

**ARTICULACIÓN ATLOIDEAXOIDEA**

La articulación atloideaxoidea se compone entre C1 y C2 y no es posible movimientos laterales debido a su diseño morfológico. (1) Esta es una articulación trocoide con dos superficies cilíndricas encajadas unas sobre otras; una, conformada por la apófisis odontoides y otras conformado por el cilindro hueco que rodea la apófisis odontoides conformado por delante, por el arco anterior del atlas, a los lados por las masas laterales del atlas que posee un tubérculo muy pronunciado en el que se fija un potente ligamento, el ligamento transverso. (31). El principal movimiento que puede haber entre C1 y C2 es el de rotación, donde la apófisis odontoides ("DENS") sirve de pivote; mientras que , lateralmente se encuentra articulado a través de las masas de C2 de facetas ligeramente convexas que facilitan este movimiento. En un individuo sano es posible rotar la cabeza aproximadamente 90° a cada lado; la mitad de este movimiento tiene lugar entre C1 y C2. Durante esta rotación los ligamentos cruciforme y transverso fijan el "DENS" contra la porción interna del arco anterior del atlas. Debido a esta fijación
se limitan los movimientos de flexión, extensión y flexión lateral. Un aumento de laxitud de estos ligamentos de soporte originados por trauma o enfermedad como la artritis reumatoide alteran la fuerte relación entre C1 y C2, las radiografías laterales pueden confirmar los hallazgos clínicos (1)

- **Raquis inferior**

En el raquis cervical inferior, las vértebras se articulan principalmente por sus cuerpos vertebrales, unidos por un disco intervertebral y sus apófisis articulares, cuyas facetas están comprendidas en un plano oblicuo hacia abajo y hacia atrás en un ángulo de 45 grados. Además, están unidas a distancia por sus laminas, sus apófisis espinosas y sus apófisis transversas (29)

En una radiografía lateral, las facetas articulares de C3 hasta C6 están alineadas lo que posibilita una visión clara de los espacios articulares. Una condición patológica como la escoliosis, cambia la relación intervertebra, impidiendo una visión clara en la radiografía (1)

Un disco intervertebral consiste en una matriz de fibras de tejido conectivo. En la matriz hay incluidos elementos cartilaginosos. Las dos funciones importantes del disco son la articulación y la amortiguación de las cargas (23) a la que se encuentra constantemente sometido y por tanto se comprende que es la estructura del raquis que se deteriora con mayor facilidad (30)

La sobrecarga de la columna suele aparecer como una disminución del espacio intervertebral (estrechándose a diferentes niveles de las vértebras adyacentes) en la proyección radiográfica lateral convencional, ya que en la técnica convencional de la columna no se logra apreciar los discos intervertebrales. Por debajo del complejo occipito-atlo-axoido, la vértebra experimenta alguna traslación durante la flexión y la extensión. La mayor amplitud de movimiento tiene lugar en la zona mediocervical, durante el doblamiento lateral y la rotación (1)

Entre las vértebras C2 y C7 se realizan movimientos de flexión, extensión y rotación con inclinación lateral hacia el mismo lado. Estos movimientos asemejan las alas de un avión, que están representadas por las facetas articulares. En los movimientos de flexión, las facetas articulares lo harán hacia delante y arriba (Como cuando el avión se eleva remontando sus alas). En el de extensión, van hacia abajo y atrás (El avión cae hacia atrás). En el de rotación derecha (cuando el avión dobla hacia la derecha) las facetas articulares derechas se dirigen hacia abajo y atrás y las izquierdas hacia delante y arriba. Lo mismo sucede con los movimientos de inclinación o flexión lateral. De esto se desprende que los movimientos de rotación y flexión lateral se realizan hacia el mismo lado guiados por las facetas articulares correspondientes. (29)

Este concepto biomecánico es fundamental para encuadrar la evaluación de la función y la aplicación de técnicas de movilización, ya que, por ejemplo, en el caso de un paciente que presenta limitación del movimiento de rotación derecha, esto se puede deber a que las facetas articulares de ese lado no van hacia abajo y atrás o que las izquierdas no lo hacen hacia delante y arriba. Por lo tanto se deben evaluar, específicamente estas facetas articulares para determinar cuál es la disfuncional y aplicar técnicas específicas de tratamiento. (29)
Los ligamentos longitudinales anteriores y posteriores se extienden a lo largo de la columna cervical y su función es la de estabilizar las articulaciones intervertebrales.

El movimiento de la cabeza y del cuello resulta de la interacción compleja de diferentes grupos musculares; por tanto se ha visto conveniente agrupar los músculos en términos de los movimientos que producen, y en el lugar de las estructuras anatómicas en que se realiza este movimiento. De esta manera se distinguen dos grupos: Los flexores y extensores, los primeros posesionados principalmente en la parte prevertebral de la columna y los extensores posesionados en la parte postvertebral de la columna. En combinación con los músculos laterales del cuello se puede realizar rotación flexión lateral.

Los pequeños músculos suboccipitales se encuentran activos durante todos los movimientos de la cabeza e inducen los movimientos en el complejo occipito-atlanto-axoido. La rotación y el doblamiento lateral puede ser inducido por la función muscular unilateral o bilateral de diferentes músculos. Aunque no está científicamente comprobado, la exploración de estos músculos podrían dar información adicional sobre los trastornos temporomandibulares o disfunción vertebral; por tanto en los pacientes con trastornos temporomandibulares debería incluirse el examen muscular. (1)

C. Definición de postura cervical

Se define a aquella, en la que hay un equilibrio entre las estructuras músculo esqueléticas cervicales, envolviendo una cantidad mínima de esfuerzo y sobrecarga, con una máxima eficiencia del cuerpo. (24)

La postura de la cabeza y de la columna cervical es mantenida por una interrelación compleja del aparato vestibular y de los sensores propioceptivos (y visuales). Mecanorreceptores específicos en las articulaciones y músculos del complejo atlantoccipital juegan un papel importante en la propriocepción. (1)

El sistema Neuromuscular responsable de la postura requiere de la coordinación de diversas actividades reflejas donde participan músculos agonista, antagonistas y de fijación regulados por el sistema nervioso central y desde el cual se ejecutan los movimientos de marcha. Los receptores de músculos y articulaciones, informan los cambios de posición y movimientos para que puedan ser procesados, generando una respuesta expresada como actividad muscular que modifica cierta postura. (32)

D. Aspectos de la biomecánica postural del cuello

Una visión posterior del cuello revela la existencia de una gran masa muscular. Esto no ocurre cuando se observa el cuello desde una perspectiva anterior. Esta disposición muscular se debe a que hay una mayor parte de la cabeza anterior a la articulación atlantooccipital. Con la ayuda del previamente mencionado sistema sensorial, los músculos post-cervicales mantienen la cabeza y el cuello erguidos. (1)(31)

Y es desde los trabajos de Thomson y Brodie en 1942 donde se postula en términos teóricos que los músculos extensores cervicales e infrahioideos trabajan simultáneamente en el proceso de estabilización de la cabeza. Esto es más evidente en los movimientos de la mandíbula, tal es así que Davis examinó las actividades EMG en
diversos músculos del cuello y masticadores durante los movimientos mandibulares. Se encontraron actividades paralelas en los siguientes músculos: Esternocleidomastoideo (ECM), semiespinoso de la cabeza, temporal y esternohioideo; siendo el ECM más activo en la apertura de la boca.

Durante diferentes movimientos mandibulares la cabeza es estabilizada por músculos que no solo actúan sobre la mandíbula. Esta interacción de diferentes grupos de músculos apoya la idea de que los músculos del cuello, la articulación Atlanto-occipital y el sistema masticatorio funcionan como una unidad funcional. Es posible hablar, deglutir y masticar sin alterar el equilibrio de la cabeza. Una postura anormal del cuello y cabeza puede influir desfavorablemente en estas funciones y viceversa. También puede darse el caso contrario, por ejemplo, una apertura extrema de la boca requiere extensión de la cabeza. Una postura anormal de la cabeza cambia la carga en diferentes articulaciones de la región cráneo-vertebral. Así mismo esto influye en la extensión y tensión de los músculos en la cabeza y en la región del cuello. Se encontraron cambios degenerativos iniciales en el raquis cervical, entendidos como una compensación estructural, cuando se presentaba una postura anormal en otra parte del cuerpo (1)

La postura de la cabeza hacia delante, va acompañada de una flexión cervicotorácica creciente y una extensión de la articulación atlanto-occipital, esta compensación ocurre automáticamente para mantener el plano de Frankfurt horizontal. La cabeza esta echada hacia delante y permite que los músculos cervicales se acorten, los músculos supra e infraohioideos no se estirarán (1)

Varios estudios han demostrado también la existencia de una relación entre la postura de la cabeza y de la oclusión (1,4,6,7,8,10,11,12,16,17,20). Los cambio en la longitud y tensión de los músculos en interacción de la mandíbula y las influencias de las fuerzas de gravedad, producirán cambios en la relación cráneo-mandibular. La flexión de la cabeza desde una posición neutral permitirá que la mandíbula se adelante. Este movimiento se invierte cuando se extiende la cabeza. A la tráquea, el esófago y a los músculos supra e infrahioides les corresponde hacer que la mandíbula regrese a su posición central, cuando la cabeza deja su posición habitual centrada para rotar. La obtención de una oclusión máxima cuando la cabeza se encuentra lejos de la posición neutral, demandará más acción de parte de los músculos de la mandíbula. Estos fenómenos deberán tenerse en cuenta en la rehabilitación oclusal. (1)

Por consiguiente, la postura anormal de la cabeza no sólo influye en la función del raquis cervical, sino también en varias funciones del sistema masticatorio. Al examinar a pacientes con TTM se debe obtener información tanto del sistema masticatorio como del raquis cervical, e integrarlas en un diagnostico diferencial. (1)

E. Postura cervical y su papel en la Oclusión

Los rasgos característicos del cráneo humano han evolucionado como resultado de una múltiple variedad de factores. Entre los más importantes figuran la expansión del cerebro con su asociado neurocranium y el desarrollo del bipedalismo. (29)

Además Sichar y Dubrul han señalado que la evolución hacia el bipedalismo, que ha culminado en el hombre moderno necesitó una modificación en la mecánica de la mandíbula. También explica ciertas adaptaciones morfológicas de la mandíbula, por
ejemplo en la proyección hacia fuera del borde de la mandíbula que caracteriza al mentón del hombre. (33)

Se afirma que la postura erecta del hombre se ha considerado secularmente como una de las cualidades divinas. Sin embargo también se sugiere que “la postura erecta no es totalmente una bendición sin complicaciones, ya que ha contribuido a que el hombre civilizado esté propenso a arcos caídos, a toda clase de hernias y a las desagradables ptosis viscerales, prolapsos y enfermedades por el estilo que el ser humano ha heredado” Tal vez sea razonable pensar que alguno de los problemas disfuncionales y de desarrollo encontrado en la práctica dental estén relacionados de alguna manera con las adaptaciones requeridas para la manutención de la postura (29)

En todo estudio postural de la cabeza, el primer problema que debe de considerarse es el concerniente a los planos de referencia utilizados para registrar tal postura. Se han definido muchos planos y líneas para identificar la posición tridimensional de la cabeza en el espacio. Uno de los planos de referencia más conocido es el plano orbitomeatal definido como estándar en el congreso antropomórfico de Frankfort, Alemania en 1884. Se supone que corresponde a un plano horizontal natural, cuando el sujeto se encuentra en la posición anatómica y la mirada se dirige a un espejo vertical en la que fija sus pupilas, o mira a larga distancia. De esta manera parece tener alguna significancia psicológica y no constituye un simple recurso anatómico arbitrario. Así pues, el “plano de Francfort” es uno de los que mayor frecuencia se utiliza.

Un segundo plano importante que debería recibir alguna atención en todo tratamiento de la postura de la cabeza, es el que atraviesa los canales horizontales semicirculares del oído interno. Algunos autores mencionan que los mamíferos cuadrúpedos en estado de alerta sostienen la cabeza de tal manera que los canales semicirculares horizontales coinciden con el plano horizontal, mientras que otros autores han demostrado que la posición de los canales semicirculares horizontales se encuentran relacionadas con las características voladoras y alimenticias de alguna especie en particular, de tal manera que demuestran su relación funcional con la orientación espacial de la cabeza.

De acuerdo con las investigaciones realizadas por Posselt, ninguna de las posiciones marginales de la mandíbula del ser humano se encuentran afectadas por la postura; el mismo comprobó que los movimientos marginales de la mandíbula difieren según los individuos en cuanto a su rango y dirección, pero se reproducen en el movimiento envolvente de cada sujeto. Por otra parte la posición de reposo no deja de ser importante y varía con cada individuo. Se ha citado muchos factores que influyen en esta variación, sin embargo la posición espacial de la cabeza juega el papel más significativo e inmediato en las variaciones del reposo mandibular. (29)

Tal es así, que cuando la cabeza esta en posición erecta la posición de reposo mandibular se encuentra de 2 a 4 mm por debajo de la posición de intercuspidación. Si los músculos elevadores de la mandíbula se contraen, la mandíbula ascenderá directamente hasta la posición de intercuspidación. Sin embargo si la cabeza se extiende 45°, la posición de reposo mandibular se modificara para pasar a una posición más retraída. Este cambio se debe a una distensión y alargamiento de diversos tejidos que se insertan en la mandíbula y la soportan. Si los músculos elevadores de la mandíbula se
contraen en esta posición, el trayecto del cierre será algo posterior al que había en la posición erecta, así pues, el contacto dentario se producirá por detrás de la posición de intercuspidación. Dado que esta posición dentaria suele ser inestable, es necesario llevar un deslizamiento con el fin de desplazar a la mandíbula hacia la máxima intercuspidación. Cuando la cabeza se ubica en la posición preparatoria para comer que viene a ser una flexión de 30°, la mandíbula se desplaza ligeramente hacia delante, en comparación a como estaba en la posición erecta. Si se contraen los músculos elevadores la mandíbula con la cabeza en esta posición el trayecto de cierre será ligeramente anterior al existente a la posición erecta, de esta manera el contacto dentario se producirá por delante la posición de máxima intercuspidación. Esta modificación da lugar a contactos intensos de los dientes anteriores. (2)

En consecuencia Posselt, en su estudio acerca de la movilidad de la mandíbula humana observó que la posición de descanso postural cambia cuando el plano de Frankfort de la cabeza se altera. Cuando la cabeza se inclina hacia atrás, la mandíbula se separa del maxilar y el espacio libre aumenta, pero cuando la cabeza esta fectada, se reduce. Además, se observa que en el paciente que muestra falta de coincidencia entre la posición intercuspal y la de contacto retruida, la mandíbula también se mueve horizontalmente hacia atrás a medida que la cabeza se extiende, lo que favorece la obtención de la relación céntrica (29).

El hecho aparente, de que la posición de descanso postural de la mandíbula sea afectada por la de la cabeza, no es extraño, si se considera que la posición de descanso está presente cuando existe un equilibrio entre los músculos que cierran y abren la mandíbula y, aun más, cuando la actividad de estos está relacionada con los del cuello y los del tronco, en lo que se refiere a la acción de las fuerzas gravitacionales que actúan sobre el sistema.

Si observamos el esquema de equilibrio postural de la cabeza veremos que el mayor volumen, el centro de la gravedad y el peso de la cabeza caen por delante de la columna cervical, razón por la cual poseemos grandes músculos en la región posterior de la cabeza y de la espalda, y músculos largos y finos en la anterior del cuello (músculos hioideos) pero estos a su vez tienen inserción a nivel mandibular (digásticos, milohioideos, geniohioideo). Por lo tanto para establecer una unidad cabeza-cuello necesitamos fijar la mandíbula a través de los músculos masticadores elevadores.

Este mecanismo de equilibrio cráneo-columna cervical-mandibular, relacionados entre sí por elementos musculares y articulares (articulación occipitoatlóidea, ATM y oclusión dentaria) se demuestra con un ejemplo simple. Si mantenemos nuestras arcadas dentarias en oclusión y dejamos caer la cabeza libremente en extensión llegará un momento en que se producirá una detención del movimiento, pero si en ese momento realizamos una apertura bucal, nuestra cabeza caerá más hacia atrás en extensión. Esto demuestra la acción de freno que ejercen los músculos de la región anterior del cuello en los movimientos de extensión de la cabeza y la última relación que ella tiene con la posición postural de la mandíbula y de la unidad cabeza cuello.

En consecuencia, toda acción o condición que altere la actividad de un grupo relacionado de músculos, afectará la musculatura masticatoria y teóricamente por lo
menos, la posición de descanso postural de la mandíbula. De modo que, algunos autores afirman también, que el reflejo tónico del cuello influye en los movimientos de la mandíbula (29)

F. Alteraciones de la postura de la columna cervical

Antes de observar la postura es necesario que el médico sepa lo que es normal. Radiográficamente, la postura normal de la región cervical, en proyección lateral debe de describirse como una ligera cifosis en el área occipital C1 y C2. Las vértebras C3 a C7 crean una suave curva lordótica. El hioides debe ser anterior y ligeramente inferior a C3, con sus astas posteriores a nivel del espacio articular C2 y C3. (67)

La valoración de la postura del paciente debe de iniciarse tan pronto como este entra a la zona de exploración . (67)

Las vértebras cervicales se alinean formando una línea cóncava hacia delante . El grado de convexidad varía ampliamente. En ciertos enfermos que acuden a la consulta por algún síndrome cervical, dichas vértebras ofrecen en la radiografía una rectificación e incluso una inversión de la curva (cifosis).

Para fines de diagnóstico, es necesario tener especial cuidado al momento de tomar la radiografía, ya que muchas veces el radiólogo es responsable de algunas imágenes de enderezamiento de la curvatura cervical al indicar al enfermo que se mantenga inmóvil al momento de hacer el disparo, aquel instintivamente debe contraer la musculatura y con ello endereza la columna.

En personas de edad avanzada con cifosis dorsal por osteoporosis u otra causa, la columna cervical ofrece un aumento de la convexidad anterior con finalidad compensadora (hiperlordosis). La imagen radiográfica es muy característica; los extremos de la apófisis espinosas tienden a juntarse y a converger en un punto próximo y las láminas llegan a contactar, mientras que la inter línea de las articulaciones posteriores ha desaparecido y en su lugar se ven los trazos de las superficies articulares muy irregulares; la densidad de las vértebras es poco intensa.

Otro aspecto de la columna cervical secundario a la osteoporosis senil. Se trata de una posición en máxima flexión, con la cabeza inclinada hacia delante y el mentón descansando sobre el esternón. La columna cervical se limita a continuar la curva de la cifosis dorsal. Esta actitud se instaura en unos meses. Se puede pensar que durante años el paciente ha compensado su cifosis dorsal mediante una hiperlordosis, pero llega un momento en que esta actitud compensadora falla, ya sea por insuficiencia muscular o esquelética, y la cabeza se inclina pasivamente hacia delante. Uno de los principales inconvenientes funcionales de esta actitud es que el paciente tiene dificultad para la deglución; también puede haber dolor cervical. La imagen radiográfica cervical no muestra alteración alguna de las estructuras vertebrales; únicamente la disposición en flexión característica.(30)

G. Métodos radiográficos para determinar la postura cervical

1.-Técnica para la toma radiográfica (ubicación del paciente)

Lo fundamental para la interpretación funcional cráneocervical es que el paciente durante el proceso de toma radiográfica se encuentre en su posición de reposo habitual
verdadero con el fin de poder encontrar alteraciones de la biomecánica vertebral.

El paciente debe de estar ubicado de pie o sentado directamente por debajo del punto central del cefalostato. Si el paciente se encuentra en posición de pie, debe existir una separación de 10 cm entre ambos zapatos nivelados. En ambas manos un peso de 1 kg en caso de pacientes menores de 12 años y 2 kg en pacientes mayores. El efecto del peso es con el objetivo de desproyectar los hombros de las últimas vértebras cervicales y permitir de este modo el estudio completo cráneocervical. Una vez completado esto, se solicita al paciente una inspiración profunda seguida de una inspiración suave, secuencia que se repite un par de veces hasta que el paciente adopte su reposo habitual y la tracción del peso en las manos descienda los hombros, en este momento se debe de adaptar las olivas en los conductos auditivos. Procurando no permitir un adelantamiento forzado de la cabeza ni suspenderlo una vez ubicado en el cefalostato. Se procede como última etapa ubicar la cabeza del paciente en el plano de Frankfort paralelo al piso. Esta posición es suficiente para provocar una desproyección de la mandíbula sobre las masas laterales de la columna vertebral. Finalmente se procede a tomar la placa radiográfica.(34)(21)(18)(9)

2.-Técnica de Pennig, medición de la profundidad cervical,

Se traza una línea tangente entre el margen póStero superior del ápice del proceso del odontoides de la segunda vértebra cervical y el punto póStero inferior del cuerpo de la séptima vértebra cervical. En el punto medio de la cuarta vértebra cervical se traza una línea perpendicular a la tangente antes descrita y se mide la extensión de esta línea recta. La profundidad normal esperada es de 10± 2 mm, considerándose rectificada al medir menos de 8 mm, cifótica cuando los valores son expresadas en cifras negativas (<1) y lordótica cuando los valores son mayores a 12 mm

3.-Trazado Cefalométrico de cabeza, cuello y la región Hioidea (relaciona la curvatura cervical con la postura funcional cráneocervical)

**Puntos y definiciones**

OA: Distancia entre la base del occipital y el arco posterior del atlas (1ra vértebra cervical).

AA: Punto mas anterior del arco anterior del atlas.

C3: Ángulo Anterior e inferior del cuerpo vertebral de la 3ra vértebra cervical.

H: (Hyoidae) El punto mas anterior y superior del cuerpo del hueso hioides.

ENP: (Espina nasal posterior) Punto mas posterior del paladar duro.

RGn: (Retrognation). Punto mas posterior e inferior de la sínfisis mandibular, determinado por la bisectriz al margen posterior e inferior de la sínfisis o el punto mas cercano desde el hueso hioides al margen posterior e inferior de la sínfisis mentoniana.

MGP: (Plano de McGregor) Trazo que va desde ENP a la base del occipital.

OP: (plano Odontoideo). Línea que une el margen anteroinferior del cuerpo del axis, al ápice del proceso odontoideas.

PH: (Plano hioideo). Plano formado desde H y la tangente a los cuernos posteriores
del hueso hioides.

El análisis Cefalométrico tiene por finalidad estudiar el ángulo póstero – inferior, el triángulo hióideo y la distancia entre el occipital y el arco posterior del atlas (C0-C1).

**Relación angular del cráneo y la columna cervical (cráneo vertebral) o ángulo póstero – inferior.**

Para medir esta relación cráneo vertebral debemos trazar:

a.-Plano McGregor (MGP)

b.-Plano Odontoídeo (OP)

c.-Medir el ángulo posteroinferior, de la intersección de MGP Y OP. Este ángulo normalmente es de 101°. Puede variar dentro de límites funcionales 5 grados de rotación posterior y anterior. Por lo tanto la relación funcional cráneo – vertebral puede ser de 96° a 106°.

**Valores menores de 96°** implican una rotación posterior exagerada de cráneo que tiende a provocar:

- Pérdida de la lordosis fisiológica de la columna cervical.
- Disminución del espacio suboccipital, provocando compresión mecánica a este nivel asociado a aligas cráneo faciales.
- Alejamiento de la síntesis mentoniana del sistema hióideo. Factor que provoca tensión exagerada de la musculatura supra e infrahióidea en dirección dorsal caudal.
- Tensión hióidea asociada a descenso de la lengua al piso de boca (alteraciones de reposo lingual).
- Tensión hióidea asociada a fuerza de tracción mandibular en sentido dorsal caudal que provoca importantes trastornos de desarrollo y crecimiento.

- Tensión hióidea, que en un paciente adulto produce una posición de relación mandibular-maxilar provocando contactos oclusales posteriores, que si el cuadro de rotación posterior se hace crónico provoca subluxaciones disco-condilares y sonidos articulares como inicio de patología articular.

**Valores mayores de 106°** implican rotación anterior del cráneo que provoca:

- Enderezamiento de la curvatura cervical que se verticaliza o se produce una inversión de la curvatura fisiológica (cifosis)
- Aumento del espacio suboccipital
- Tensión exagerada de tejidos blandos cráneo vertebrales posteriores, factor de neuropatías por atrapamiento periférico concomitante a aligas cráneo – cervicales

**Distancia entre la base occipital y el arco posterior del atlas**

Esta distancia puede variar dentro de lo funcional entre 4 y 9 mm. Distancias menores de 4 mm pueden estar relacionadas con rotaciones posteriores del cráneo y distancias mayores a 9 mm. relacionadas con rotaciones anteriores del cráneo.

1.- Distancia OA menos de 4 mm
- Compresión mecánica suboccipital
- Retracción de los músculos suboccipitales
- Acortamiento del ligamento nucal
- Limitación del movimiento de flexión (rotación anterior).
- Distancia OA mayor de 9 mm
- Pérdida de la lordosis fisiológica cervical por verticalización o inversión de la lordosis cervical ( cifosis )
- Distensión ligamentosa y muscular. De los elementos suboccipitales.
- Atrapamiento periférico neurovascular por exceso de tensión de tejidos blandos a este nivel. Sensación de corriente eléctrica y/u hormigueo de la aponeurosis craneal ( paciente con “dolor al pelo”) Posiciones básicas del hueso hioides en relación a las curvaturas de la columna cervical (triángulo hioideo)

A continuación se describen las relaciones craneo . vertebrales y su relación con las curvaturas de la columna cervical que se observa con mayor frecuencia en la práctica clínica.

a. Curvatura cervical normal con relación craneo vertebral normal.

La relación vertical del hueso hioides debe de estar por debajo del plano C3-RGn. Al unir los puntos cefalométricos C3-RGn y C3-H-RGn, nos dará un triangulo de relación hioidea positiva. Triángulo Hioideo positivo = hioides por debajo de la línea C3-RGn. Esta características se da cuando existe participación de las estructuras de la región hioidea con una lordosis cervical normal.

b. Pérdida de las curvaturas fisiológicas cervicales.

- Columna cervical recta. Si la columna cervical se rectifica y 1) se mantiene una relación craneovertebral normal o 2) se produce además una rotación posterior de cráneo con un ángulo MGP- OP menor a 96° o el espacio OA menor a 4 mm. el hueso aparecerá elevado encontrándose en la misma línea del plano C3-RGn ( por lo tanto no existe triangulo hioideo)

- Columna Cervical invertida (CIFOSIS). Si existe una inversión de la curvatura cervical con 1) una relación craneo vertebral normal o 2) con un ángulo inferior a 96° MGP-OP. El hueso hiodes aparecerá por encima del plano C3-RGn. Produciéndose la situación del triangulo hioideo negativo: relación vertical del hioides en relación al plano C3-RGn aparecerá por encima de esta línea.

Ambas situaciones aumentan la distancia C3-RGn provocando tensión posterior mandibular.

Esta situación se produce ya que la columna cervical al rectificarse o al invertir su curvatura pone en tensión la fascia cervical insertada en el hueso hioideo provocando tracción posterior de éste. Esta situación se manifiesta además por una fuerza de descenso de la posición de reposo lingual . (34)
2.2.2. TRASTORNOS TEMPOROMANDIBULARES

2.2.2.1. Denominación

A lo largo de los años, los trastornos funcionales del sistema masticatorio se ha identificado con diversos términos, lo que ha contribuido a crear cierta confusión en este campo. (2)

En 1934 James Costen describía el síndrome que lleva su nombre. El sostenía que el desplazamiento distal del cóndilo producía tensión después de perder premolares y molares por la comprensión del nervio auriculo temporal o presión directa sobre las estructuras del conducto de Eustaquio en el oído, luego Zimmerman en 1951 se encargaría de desmentir esta hipótesis (35).

Posteriormente Shores introdujo la denominación síndrome de la disfunción de la articulación temporomandibular, luego Ramford y Ahs lo denominarían como alteraciones funcionales de la articulación temporomandibular. Mas tarde se opto por denominaciones donde se resaltaba los factores etiológicos sugeridos (trastorno oclusomandibular, mioartropatía de la articulación temporomandibular), mientras que otros resaltaban el dolor (síndrome de dolor disfunción, síndrome de dolor disfunción miofacial, síndrome de dolor disfunción temporomandibular) (2). Posteriormente sería denominada como disfunción craneomandibular por la Academia Iberolatinoamericana (36). En el afán de adjudicarle una denominación menos restrictiva, actualmente es usada el término introducido por Bell y aceptado por la ADA; de Síndrome de trastornos temporomandibulares (TTM) (35). Esta denominación no sugiere simplemente problemas limitados a las articulaciones, sino que incluye todos los trastornos asociados con la función del sistema masticatorio (2). Según Mohl y colaboradores (37), los TTM son un término colectivo que abarca varios problemas clínicos que involucran la musculatura masticatoria y la articulación temporomandibular. A su vez estos desórdenes pueden ser destacados como intrínsecos y extrínsecos. Un desorden intrínseco refleja patología de la ATM; mientras que un desorden extrínseco refleja disturbios del sistema neuromuscular (2). Estos TTM extrínsecos a menudo involucran el sistema músculo esquelético cráneo-cervical y pueden ser considerados bajo el rubro general de disfunción músculo esquelética de cabeza y cuello (29)

2.2.2.2. Definición

A nivel del aparato masticatorio o sistema Estomatognático, la forma y función están íntimamente ligados de tal forma que conforman una unidad biológica. La existencia de armonía o compatibilidad morfuncional entre los distintos componentes constituyen el concepto de salud biológica del sistema. La presencia de variaciones en el funcionamiento del sistema masticatorio conlleva elementalmente a una situación patológica o disfuncional (38). Para cumplir su función es necesaria una contracción coordinada de diversos músculos de la cabeza y del cuello para poder mover la mandíbula con precisión y permitir un funcionamiento eficaz. (2)
CAPÍTULO II. MARCO TEÓRICO

Los trastornos temporomandibulares como se denomina actualmente, es la función dolorosa o defectuosa de la articulación temporomandibular

Trastornos temporomandibulares es un término usado para reunir un conjunto de enfermedades que acomete los músculos masticatorios, ATM y estructuras adyacentes(7) así como también problemas clínicos caracterizados por el dolor de la musculatura masticatoria, musculatura relacionada con la cabeza y el cuello; dolor de la articulación temporomandibular, tejidos blandos y duros asociados; limitación de la función mandibular con o sin presencia de sonidos articulares. Es altamente debilitante y altera la perfecta realización de algunas funciones esenciales como masticar alimentos o hablar adecuadamente. (7)

La American Academy of Orofacial Pain (AAOP) define a los TTM como “un término genérico en el que engloba una serie de problemas clínicos que afectan a la musculatura masticatoria, la articulación temporomandibular (ATM) y las estructuras asociadas o ambas”. (35)

2.2.2.3. Epidemiología

La epidemiología de los trastornos temporomandibulares (TTM) aborda su frecuencia e incidencia, ya que para que se lleve a cabo un estudio de los TTM en la práctica odontológica en primer lugar debe demostrarse que constituye un problema importante en la población general y en segundo lugar debe relacionarse con estructuras tratadas por el odontólogo (2). Las investigaciones epidemiológicas llevadas a cabo durante los últimos 15 años han demostrado que los TTM son altamente frecuentes.(1). A continuación se comentaran los trabajos epidemiológicos realizados tanto a nivel mundial como a nivel nacional.

Según Arroyo; resumiendo los trabajos de Helkimo , Agerberg, Carlsson, kayser y otros, ha encontrado una frecuencia dentro de la población mundial que varía desde 77% hasta 88%. (39)

Los estudios actuales revelan que en promedio 45% de sujetos estudiados presentaban al menos un síntoma y un 58% presentaban al menos un signo clínico. Sin embargo al analizar los pacientes con síntomas severos que requerían tratamiento, esta prevalencia disminuye al 5-12% . (40),(2).

Según Alonzo (41), las estadísticas internacionales arrojan que solo el 17% de la población está libre de problemas a nivel articular, el 43% presenta manifestaciones leves de TTM y el 40% restante se considera con alteraciones entre moderadas y graves.

En relación a los trabajos realizados en el Perú se encuentran presencia alta de TTM; tal es así que Ariano (42) en 1984 encontró una frecuencia de 77.3%; Valdivia (43) en 1986 halló una frecuencia de 89.4%, resultado muy cercano al encontrado por Paredes (44) en 1988 donde estudió la presencia de TTM en 80 pacientes comprendidos entre 17 y 65 años de ambos sexos internados en el hospital Hipólito Unanue. Encontró una frecuencia de 86.25 % a través de examen clínico y 57% a través del cuestionario; y en relación al género, 97.3% en mujeres y 76.7% en varones; en el mismo año Pasco - Font Quevedo (45) investigó la frecuencia de la TTM en la comunidad rural de Hualis,
anexo del distrito de Marco, provincia de Jauja, departamento de Junín, encontrando un 94.11% de afectados.

En los estudios realizados actualmente en nuestro país; Nugent (46) en 1998 encontró un 87.17%; el mismo año Paredes en una nueva investigación (47), donde evaluó 288 personas de las áreas de influencia de la facultad de odontología de la UNMSM encontró una prevalencia de 85.09%, valor muy similar al encontrado en su primer trabajo; el año 1999 Arroyo encontró un 46.8%; en el 2004 Gamboa encontró un 99.2% de TTM, de los cuales se encontró un 49.2% de casos con TTM severo; hay que tomar en cuenta que estos últimos trabajos realizados, se usó el índice de Helkimo.

De acuerdo a todos los trabajos epidemiológicos realizados se puede concluir que la prevalencia de los trastornos temporomandibulares es elevada. (2);

Con respecto a la distribución de los TTM según el sexo y la edad, clásicamente se describe una mayor incidencia en mujeres, aunque en los últimos años la proporción mujeres / varones afectados ha disminuido, existiendo incluso estudios que demuestran que no existen diferencias entre ambos sexos, siendo su manifestación más frecuente en las edades medias de la vida (40).

La evaluación de los resultados de estudios epidemiológicos no solo demuestra la relación entre la parte anatómica de la articulación y su musculatura asociada sino que también ofrece un claro cuadro del desarrollo de la alteración craneomandibular con la incoordinación muscular al comienzo, seguido después de la aparición de lesiones en la parte anatómica de las estructuras. Por lo tanto la epidemiología de esta enfermedad común puede también jugar un papel importante en la interpretación de su complicada génesis. (1)

2.2.2.4. Etiología

La Etiopatogenia de los desórdenes craneomandibulares (TTM), incluye anormalidades estructurales y estrés que induce la hiperactividad muscular y trauma por sobrecarga (39).

La mayoría de autores consideran la etiopatogénesis de los TTM como de tipo multifactorial(48),(2). Porque no hay una etiología única que explique todos estos signos y síntomas. Hay muchas alteraciones que pueden afectar la función masticatoria. Además, según las estructuras afectadas, pueden darse diversos trastornos (2). El estado emocional, maloclusión, trauma y parafunción son los factores más conocidos (49, 50).

La etiopatogenia de los TTM en el momento actual, definitivamente es considerada multifactorial, prueba de esto son las múltiples teorías emitidas que tratan de justificar todos los aspectos involucrados en el cuadro clínico, sin lograr resultados satisfactorios. Teorías estiopatogénicas se reúnen en cuatro grupos, Teorías Mecánicas, T. Miogénicas, T. Psicológicas y T. Multifactorial (40).

Los problemas que dan origen a los TTM comienzan con la ruptura del equilibrio armónico de esta articulación, (articulaciones, dientes, sistema neuromuscular, o los ligamentos) influirán directamente sobre los otros y ante esta situación se pondrá en marcha toda la serie de mecanismos protectores que el sistema posee para lograr la
adaptación al cambio que se ha impuesto. Cuando los mecanismos de adaptación no logran contrarrestar estos factores patogénicos que están afectando la articulación se produce lo que se conoce como un cuadro de disfunción. Si bien en la práctica los orígenes de este cuadro pueden ser muy variados, se puede decir que hay dos factores fundamentales que raras veces están ausentes en este tipo de enfermedad, estos factores son: la mala oclusión sumada a la tensión psíquica exagerada (41).

- La postura como factor etiológico

La posición del cuerpo puede ser un factor de influencia en la función del sistema Estomatológico (1)

El Sistema Cráneomandibular es componente integral del cuarto superior del cuerpo, compuesto por la cabeza, cuello y cintura humeral

Las alteraciones posturales por traumatismo agudo o por microtraumatismos acumulados afectan la interrelación propioceptiva, vascular y nerviosa normal en la región suboccipital. El paciente puede referir molestias faríngeas, laríngeas, óticas, viscerales y abdominales

La postura ideal es “el estado de equilibrio esquelético y muscular que protege las estructuras corporales de sostén contra toda lesión o deformación progresiva”, independientemente de la actitud (erecta, de cómodo, en cucillitas, inclinada) en que estas estructuras trabajen o guarden reposo. Los factores que pueden contribuir a un desequilibrio muscular e ineficiente empleo del cuerpo son muchos, incluyendo los de tipo genético, los relacionados con estructura familiar, las alteraciones congénitas, las proporciones corporales y esfuerzos de crecimiento, actividades diarias, enfermedades, confinamiento prolongado en cama, requerimientos laborales y ocupacionales, cambios de la fisiología corporal (embarazo) situación sicológica, cultura, estrés, dolor, traumatismo y reforzamiento de patrones existentes.

Puede presentarse tal situación en músculos masticatorios y cervicales, por ejemplo: si se pierden dientes posteriores; en presencia de discrepancia oclusal; esquelética Clase II y III o bien lordosis excesiva de la columna cervical (51)

Por consiguiente, la postura anormal de la cabeza no solo influye en la función del raquis cervical, sino también en varias funciones del sistema masticatorio. Al examinar a pacientes con disfunción cráneo mandibular se debe obtener información tanto del sistema masticatorio como del raquis cervical, e integrarla en un diagnostico diferencial (1)

2.2.2.5. Signos y síntomas

Aunque los signos y síntomas de trastornos del sistema masticatorio son frecuentes, puede resultar muy complejo comprender su etiología ya que no existe una que explique todos estos signos y síntomas. (2)

Clásicamente se caracterizó al síndrome de disfunción craneomandibular (TTM) por una tríada sintomatológica caracterizada por: dolor (en el área preauricular, ATM, o muscular), disfunción y ruidos articulares, pudiendo además encontrarse alteraciones como son: dolor desencadenado a la palpación o durante la función, y relaciones
oclusales estáticas y dinámicas alteradas (41).

Las diversas localizaciones importantes de posibles alteraciones que expresaran signos y síntomas son los músculos, las ATM y la dentadura (2);

La sintomatología se puede resumir en dolor; disfunción y alteraciones estructurales (36)

El dolor muscular a la palpación es el síntoma más frecuente (35); dolor de la musculatura masticatoria asociada a cefalea, dolor facial, otalgia, odontalgia, dolor cervical, de hombro, espalda y pecho; dolor en la articulación temporomandibular y dolor periodontal. (47, 52)

La disfunción también se expresa en movimiento alterado de la cabeza, rigidez , cansancio mandibular , alteraciones en su movimiento; a nivel auditivo se encuentra tinnitus, ruido sordo, mareo , disminución de la audición; en la garganta se observara dificulta para deglutir, alteraciones en el patrón fonético, y en la ATM se encuentra ruidos, dislocación o traba así como postura alterada de la cabeza que se dirige hacia adelante y hacia abajo

Las alteraciones de estructura se observaran en el deterioro de los dientes (astillado, erosión, abfracción, calcificaciones pulpares, resorción radicular); en el deterioro del periodonto, remodelado patológico de la superficie del ATM; a nivel muscular se puede observar fibromiositis, hipertrofia, hipertonia, indentaciones linguales, etc. (36, 2)

El signo más común incluye el ruido articular, limitación y desviación mandibular en el rango del movimiento.

2.2.2.6. Clasificación

Para tratar eficazmente los Trastornos Témporo Mandibulares es preciso conocer los numerosos tipos de problemas que pueden existir y la variedad de etiologías que las causan; por tanto es necesario diferenciar estos trastornos en grupos comunes de síntomas y etiologías para lograr un diagnostico clave para el éxito del tratamiento (2).

La falta de criterios diagnósticos unificados para definir los subtipos clínicos de los TTM es un problema crítico para el entendimiento profundo de los TTM.(53) Es así que diferentes autores propusieron variantes en la clasificación.

Dworkin (53) presentó un proyecto para tratar de establecer criterios diagnósticos en investigación titulado “Criterios diagnósticos en investigación de trastornos temporomandibulares” cuyo objetivo fue obtener criterios diagnósticos para definir los subtipos de TTM estableciendo dos ejes; en uno se colocara el diagnostico físico y en el otro se evaluará el aspecto sicológico.

Mc Neill(54) presenta la clasificación y criterios diagnósticos para cefaleas, neuralgias craneales y dolor facial realizada por la Sociedad Internacional de Cefaleas en colaboración con la Academia Americana del Dolor Orofacial, donde lo TTM están incluidos en el punto N° 11, específicamente el 11.1, 11.7 y 11.8. Los TTM quedarían clasificados de la siguiente manera:

11. cefalea o dolor facial asociado con trastorno del cráneo, ojos, oídos, nariz, senos,
boca u otras estructuras faciales o craneales.

11.1. Huesos del cráneo incluyendo el maxilar inferior.
- Trastornos congénitos y de desarrollo
- Aplasia
- Hipoplasia
- Hiperplasia
- Displasia
- Trastornos adquiridos
- Neoplasia
- Fractura

11.7. Trastornos de la ATM desviación de la forma.
- Desplazamiento Meniscal
- Con reducción
- Sin reducción
- Dislocación
- Condiciones inflamatorias
  - Sinovitis
  - Capsulitis
  - Artritis
- Osteoartritis
  - Osteoartrosis
- Poliartritis
  - Anquilosis
- Fibrosa
  - ósea

11.8. Trastornos de los músculos masticatorios
- Dolor miofacial
  - Miositis
  - Espasmos
  - Contracción muscular protectora
  - Contractura
  - Neoplasia

Le Reshe y col (55) dividen el diagnostico de las condiciones físicas en tres grupos
I.-Diagnostico muscular
Trastornos temporomandibulares y alteraciones posturales de la columna cervical en personal asistencial del departamento de odontología del Hospital Militar Central

a.- Dolor miofacial
b.- Dolor miofacial con apertura limitada

II.- Desplazamiento meniscal
a.- Desplazamiento meniscal con reducción
b.- Desplazamiento meniscal sin reducción y con limitación de apertura.
c.- Desplazamiento meniscal sin reducción y sin limitación de apertura.

I.- Artralgias, Artritis y artrosis
a.- Artralgia
b.- Osteoartritis de la ATM
c.- Osteoartrosis de la ATM

Okseson (2) presenta una clasificación para el diagnostico de los TTM tomando términos establecidos por la Academia Americana de Dolor Orofacial:

I.- Trastornos de los músculos de la masticación
1.- Co-contracción protectora
2.- Dolor muscular local
3.- Dolor miofacial
4.- Miospasmos
5.- Miositis

II.- Trastornos de la Articulación Temporomandibular
1.- Alteraciones del complejo cóndilo-disco.
a.- Desplazamiento Discales
b.- Luxación discal con reducción
c.- Luxación discal sin reducción

2.- Incompatibilidad estructural de las superficies estructurales.
A.- Alteración Morfológica

I.- Disco
ii.- Córnilo
iii.- Fosa
b.- Adherencias
i.- De disco a cóndilo
ii.- De disco a fosa
iii.- Subluxación (hipermovilidad)
c.- Luxación Espontánea

3.- Trastornos inflamatorios de la ATM
a.-Sinovitis
b.-Capsulitis
c.-Retrodiscitis
d.-Artritis
i.-Osteoartritis
ii.-Osteoartrosis
iii.-Poliartritis
e.-trastornos Inflamatorios de estructuras asociadas
i.-Tendinitis del temporal
ii.-Inflamación del ligamento estilomandibular
III Hipomovilidad Mandibular Crónica
   - Anquilosis
   a.-Fibrótica
   b.-Osea
   - Contractura muscular
   a.-Mioestática
   b.-Miofibrótica
   - Choque Coronoideo (impedimento coronoideo)
IV. Trastornos del crecimiento
   1. Trastornos óseos congénitos y de desarrollo
      a.-Agenesia
      b.-Hipoplasia
      c.-Hiperplasia
      d.-Neoplasia
   2. Trastornos musculares congénitos y del desarrollo
      a.-Hipotrofia
      b.-Hipertrofia
      c.-Neoplasia

2.2.2.7. Diagnóstico

El diagnóstico se obtiene mediante una valoración cuidadosa de la información procedente de la historia clínica y de métodos de exploración. Esta información debe permitir la identificación de un trastorno específico. (2)

El diagnóstico requiere de la ejecución de los siguientes procedimientos mínimos:
1.-Adequado manejo de la historia clínica. La anamnesis facilitara el relato de la enfermedad, los antecedentes, factores predisponentes, enfermedades sicosomática y sintomatología. El examen clínico debe brindar información acerca de la dinámica mandibular, el estado de la musculatura masticatoria, la función del ATM, condiciones del periodonto y del sistema dentario.

2.-Análisis funcional de la oclusión en los modelos montados en un articulador semiajustable.

3.-Análisis exhaustivo de las radiografías periapicales, panorámicas y en casos indicados radiografías específicas del ATM.

4.-Diagnostico diferencial de otras patologías con sintomatología semejante y que pueden presentarse simultáneamente. Se requiere para ello realizar las interconsultas pertinentes con otras disciplinas médicas y estomatológicas.

5.-Determinar con exactitud los factores oclusales, biológicos, sicológicos y sociales, para proceder primero al tratamiento de la sintomatología y luego a la rehabilitación funcional de la oclusión. (36)

La interrelación de los aspectos mencionados nos permitirá formular una adecuado diagnóstico.

En relación a la valoración diagnostica se aplicaran los test de Krogh Poulsen y/o Helkimo (para determinar si existe o no disfunción) el índice de Helkimo nos indica la gravedad. Estos índices son un parámetro de utilidad para el estudiante y para la investigación epidemiológica ó clínica.

Además, es necesario determinar el tipo de trastorno temporomandibular en relación al sistema mas afectado(gravedad) o en relación a síntomas típicos o patognomómicos; así como la posibilidad diagnostica de otras enfermedades. (36)

2.2.3. TRASTORNOS TEMPOROMANDIBULARES Y LA POSTURA CERVICALES

2.2.3.1. Trastornos Temporomandibulares y Postura.

La posición del cuerpo puede ser un factor de influencia en la función del sistema Estomatognático (56)

Diferentes investigaciones demuestran la relación entre la postura corporal y la presencia de trastornos Temporo Mandibulares; comenzando por el trabajo de Thompson en 1942 donde describió la influencia de la postura del cuerpo en la posición de la mandíbula(57). Gelb (1994) entrega un planteamiento importante en el diagnostico y tratamiento de los trastornos Temporo Mandibulares, señalando que las alteraciones de la postura juegan un rol etiológico en estos trastornos, y propone para el tratamiento de estos, se incluya la corrección de la postura corporal (58)

Algunos autores plantean que una alteración de la posición de las caderas puede ser causa etiológica para los trastornos Temporo Mandibulares (56)(59), mientras que otros
afirman que las alteraciones la Articulación Temporomandibular son más frecuentes cuando en el mismo lado del cuerpo se presenta la cadera mas baja(60), otros encontraron una relación entre la alteración de la postura de las caderas y alteraciones de la Articulación temporomandibular y además observaron que la Articulación temporomandibular que se encuentra en el lado del cuerpo donde existe una cadera más baja, presenta al examen clínico una prevalencia de ruido articular (61).

La estabilidad ortostática del creme sobre la columna cervical influye en la etiología de las TTM, porque determina la posición espacial de la mandíbula, influenciando aspectos de la oclusión, como la posición de contacto retruida, el espacio introclusal, la posición de eje de bisagra terminal de la ATM y la relación de contacto de los dientes en la oclusión habitual, además de la actividad electromiográfica de los músculos masticadores y de la nuca, que al alterarse pueden producir TTM.(6)

En los últimos años se ha comunicado que los TTM, no sólo se puede relacionar con la posición de la mandíbula y del cráneo, sino también con la columna cervical, las estructuras supra e infra hióideas, los hombros y la columna torácica y lumbar, las que funcionan como una unidad biomecánica. Los cambios en algunos de estos componentes también podrían desencadenar alteraciones en el sistema craneomandibular (6)

La conclusión de trabajos y de otras investigaciones determina que se debe comenzar a identificar a la postura como factor etiológico de los trastornos temporomandibulares (6) (20)

2.2.3.2. Trastornos Temporomandibulares y la Postura cervical

Debido a la íntima relación existente entre los músculos de la cabeza y la región cervical con el sistema estomatognático, se iniciaron estudios que visaban confirmar que alteraciones posturales de la cabeza, cuello y resto del cuerpo podrían llevar a un proceso de desventaja biomecánica del ATM , llevando a un cuadro de disfunción temporomandibular.(7)

Al analizar desde el punto de vista biomecánico la relación cráneo-columna cervical en forma lateral, se puede notar que la mayor parte del peso del cráneo, su centro de gravedad, descansa en la región anterior de la columna cervical y en las articulaciones temporomandibulares. Siendo así, su posición ortostática es mantenido por un complejo mecanismo muscular implicando músculos de la cabeza, cuello y cintura escapular. Debido a estas íntimas relaciones, cualquier alteración en una de estas estructuras podría llevar a un desequilibrio postural no sólo en esta zona sino también en las demás cadenas musculares del organismo. (29)

Las complejas interrelaciones anatómicas y biomecánicas entre el sistema Estomatognático y el área de cabeza y cuello permiten una relación entre TTM y postura. (7).

Diversos estudios han determinado que pacientes con TTM poseen alteración en la posición en la cabeza y hombros así como el incremento de la lordosis cervical. (7)

Desvíos en el posicionamiento de la cabeza y hombros pueden ocurrir como consecuencia de diferentes alteraciones e incluso los mismos disturbios...
Trastornos tempormandibulares y alteraciones posturales de la columna cervical en personal asistencial del departamento de odontología del Hospital Militar Central

cranio mandibulares. Disturbios del aparato estomatológico, como la hiperactividad muscular por ejemplo llevan a la interiorización cervico-escapular. La actividad aumentada de la musculatura masticatoria interfiere en los músculos llamados de contra apoyo (esternocleidomastoideo, trapecio) conllevando a la contracción de estos músculos posteriores del cuello y estiramiento de los anteriores, acarreando a una posición anterior del cuerpo, ultrapasando el cuadrilátero de sustentación. (65)(1)

Simultáneamente, la posición anterior de la cabeza ira a acarrear en disturbios de posicionamiento y funcionamiento mandibular, llevando a una creciente tensión en la musculatura masticatoria y consecuente TTM (7)

La lordosis aumentada también es una señal importante encontrada en pacientes con TTM.( 7)

La explicaron para el origen de tal alteración postural fue abordada por diversos estudios, donde algunos autores afirman que al realizar la interiorización de la cabeza, la mirada pasa a quedar abajo y en la tentativa de nivelar la mirada haciéndola funcional ocurre el aumento de la lordosis cervical (7) (1)

Otros autores explican que siendo los musculos de la masticación sinergicos a los musculos cervicales, un desequilibrio en ellos, causa fuerzas retrusivas en la mandbula, alterando su posicionamiento de reposo y llevando a una hiperactividad muscular.

En el trabajo de Guillenspi se demostró que el aumento de la lordosis cervical es consecuencia de la hiperactividad de los músculos de la masticación, debido a la alteración de tensión de las estructuras asociadas (músculos, facias y ligamentos) (64)

Otra explicación que relaciona a los TTM con la alteración de la postura de la columna cervical se basa en que el principal síntoma de este cuadro es el dolor miofacial asociada con la función mandibular alterada (63).

Se cree que esta sintomatología dolorosa; que tiene como principal responsable al espasmo de los músculos de la masticación, puede desencadenarse por distensión, contracción, o fatiga muscular (62), causados a su vez, por hiperactividad muscular. (15).

Esta hiperactividad muscular, y específicamente la hiperactividad de los musculos de la masticación trae como consecuencia un aumento de la lordosis cervical, debido a la alteración de tensión de las estructuras asociadas (músculos, facias, ligamentos) (64) y sus sinergismos con los musculos cervicales(12), generándose así una alteración de la postura cervical.

La postura merece una consideración especial, ya que es un componente etiológico en el inicio, la predisposición o la perpetuación de los TTM. Por desgracia a menudo se comprende mal o se olvida por completo durante la exploración. La mala postura debe considerarse como un proceso de lesiones motoras repetitivas y como una deficiente biomecánica que crea palancas causantes de múltiples sobrecargas de trabajo para los sistemas articulares.(67)

Cuando el comportamiento incorrecto es crónico y se repite habitualmente a lo largo del tiempo el sistema puede iniciar un proceso de remodelación o de desgaste. El grado de remodelación o de desgaste y la magnitud de la liberación inflamatoria de los mediadores químicos del dolor son directamente proporcionales a la intensidad de la
fuerza, a la frecuencia de la agresión y a la sensibilidad del huésped (67)

2.3. DEFINICIÓN DE TÉRMINOS

- Postura cervical Se define a aquella, en que hay un equilibrio entre las estructuras músculo esqueléticas cervicales, envolviendo una cantidad mínima de esfuerzo y sobrecarga con una máxima eficiencia del cuerpo. (24)

  - Trastorno temporomandibular Es la alteración funcional del sistema masticatorio (38).

  - Indice de Krogh Poulsen. Test epidemiológico, diseñado para determinar la existencia o no de Trastornos temporomandibulares (36)

  - Técnica de Penning. Técnica para medición de la profundidad cervical. Que resulta de la medida de la línea perpendicular trazada desde el punto medio de la cuarta vértebra cervical a la a la tangente que pasa por la el margen póstero superior del ápice del proceso del odontoides de la segunda vértebra cervical y el punto póstero inferior del cuerpo de la séptima vértebra cervical.

  - Síndrome de Eagle. Patología cuya trascendencia odontológica se basa en el crecimiento excesivo de la Apófisis Estiloides

2.4. PLANTEAMIENTO DEL PROBLEMA.

2.4.1. ÁREA PROBLEMA

En la practica odontológica se atiende a muchos pacientes, ya sea de manera particular o pública, estos pacientes acuden para encontrar una solución a sus diferentes problemas de salud bucal que pueden ser funcionales, estéticos o ambos. Algunos de los problemas pueden ser más complejos como son los trastornos temporomandibulares (TTM) (1) debido a que posee una etiología múltiple (1,2), alta frecuencia (1,2,3) y comprende una serie de alteraciones funcionales que pueden afectar la articulación temporomandibular (ATM), musculatura masticatoria o ambas simultáneamente(4); por tanto es de vital importancia la evaluación rutinaria del sistema Estomatognático para determinar su presencia(3).

Actualmente se ha considerado que las alteraciones de la estabilidad ortostática del cráneo sobre la columna cervical (postura del cráneo y cuello) son factores asociados, que con frecuencia se encuentran en pacientes que presentan TTM (9,6) ya que se relaciona con componentes oclusales como la posición de reposo(1, 10), posición intercuspidía (10), el patrón de movimiento de la mandíbula (11) , así como la dimensión vertical de reposo(12 , 10) que al alterarse podrían producir TTM (6)
Tal es así que diversos trabajos han confirmado la relación entre los TTM y las alteraciones posturales (5, 6, 7, 8); actualmente los TTM, no sólo se pueden relacionar con la posición de la mandíbula y del cráneo, sino también con la columna vertebral,(13,1), hombros y caderas(6). Los cambios en algunos de estos componentes también podrían desencadenar alteraciones en el sistema craneomandibular (SCM). (6)

De acuerdo a lo mencionado, podríamos decir que existen múltiples autores que han determinado que los pacientes con disfunción en el raquis cervical presenta una mayor prevalencia de TTM (68), siendo esto apoyado por diversos estudios epidemiológicos que afirman la coexistencia de ambas entidades. (77).

Por otro lado otros autores han concluido que no hay evidencias para afirmar que las disfunciones de la región cervical tengan relación con los TTM (69) en este trabajo se concluyó que los pacientes con disfunción cervical no presenta una mayor prevalencia de signos y síntomas en la ATM que la población adulta sin disfunción cervical.

### 2.4.2. DELIMITACIÓN.

El presente trabajo de investigación pretende determinar la relación entre la presencia de los trastornos temporomandibulares y la presencia de las alteraciones posturales de la columna cervical en el personal asistencial del Departamento de Odontología del Hospital Militar Central en el mes de Julio del 2006, de ambos sexos, que se encuentren entre las edades de 20 y 40 años

### 2.4.3. FORMULACIÓN.

¿Existe relación entre los trastornos temporomandibulares y las alteraciones posturales de la columna cervical en el personal asistencial del Departamento de Odontología del Hospital Militar Central en el mes de Julio del 2006?

### 2.5. JUSTIFICACIÓN DEL PROBLEMA.

#### 2.5.1. A NIVEL GENERAL.

Entre los diferentes estudios realizados sobre el tema de TTM se ha determinado la naturaleza multifactorial de su etiología; encontrándose, que las alteraciones en la postura de las diferentes partes asociadas al sistema craneomandibular así como de todo el cuerpo podrían ser causa etiológica de los TTM.

Por otro lado existen autores que explican que no hay evidencias para afirmar que las disfunciones de la región cervical tengan relación con los trastornos temporomandibulares; por tanto las alteración posturales de la columna cervical no causaría los trastornos temporomandibulares.
De acuerdo a esto se podría concluir que no existe evidencia clara y certera de cuán significativa puede ser esta correlación.

Es por ello, el presente estudio pretende determinar la relación entre los TTM y las alteraciones posturales de la columna cervical.

Esperando sirva de ayuda a los odontólogos en el diagnóstico temprano de los TTM; ya que de confirmarse esta relación, el profesional tendrá que variar su plan de tratamiento convencional y tomar en cuenta a la postura cervical como parte de los tratamientos prioritarios.

2.5.2. A NIVEL INSTITUCIONAL.

Los resultados proporcionados por el estudio servirán como índice estadístico de la frecuencia de pacientes con signos y síntomas de TTM así como también con alteraciones de la postura cervical.

Así mismo servirá como base para sugerir la coordinación con otros servicios médicos relacionados, para el tratamiento multidisciplinario de los pacientes que presentan postura incorrecta y TTM.

2.5.3. A NIVEL LABORAL.

El mejorar la calidad de vida de una persona genera mayor eficiencia de su capacidad productiva; es por tal motivo que las instituciones y empresas deben tener en cuenta que los recursos humanos siendo la base de su institución y existencia deben gozar de una óptima salud que puedan mejorar su desempeño laboral.

Es así que este estudio pretende aportar en la presencia de la mala postura, específicamente la cervical, como problema de salud ocupacional en el personal y su correlación con signos y síntomas de los TTM.

2.5.4. A NIVEL PROFESIONAL.

El incremento del conocimiento de los factores etiológicos de los TTM ayudará a facilitar su diagnóstico y tratamiento. De esta manera se canalizará el tratamiento multidisciplinario, con la colaboración de diferentes profesionales como fisioterapeutas, kinesiólogos, etc.

La presente investigación podrá ser útil como antecedente de futuros trabajos científicos que colaboren en el conocimiento de las diferentes causas que provocan los TTM.

2.6. LIMITACIONES DEL PROBLEMA.
- El conjunto de síntomas y signos estudiados podrían verse distorsionados debido a diversos factores, como falta de ánimo de los pacientes, cansancio del operador y experiencia del examinador.

- Los trazos a realizarse en la telerradiografía lateral se distorsionarían debido a una variación en la resolución de las imágenes al momento de la toma y procesado, así como la destreza para ubicar los puntos.

- La falta de colaboración de los pacientes para el desarrollo del estudio.

2.7. OBJETIVOS.

2.7.1. OBJETIVO GENERAL.

-Determinar la relación entre los TTM y la presencia las alteraciones posturales de la columna cervical en el personal asistencial del Departamento de Odontología del Hospital Militar Central, de ambos sexos, que se encuentren entre las edades de 20 y 40 años

2.7.2. OBJETIVOS ESPECÍFICOS

- Determinar la frecuencia de los Trastornos temporomandibulares en la muestra estudiada.
  - Determinar la frecuencia de los trastornos temporomandibulares según la edad.
  - Determinar la frecuencia de los trastornos temporomandibulares según el género.
  - Determinar la frecuencia de la alteraciones posturales de la columna cervical en la muestra estudiada.
  - Determinar la frecuencia de las alteraciones posturales de la columna cervical según la edad.
  - Determinar la frecuencia de las alteraciones posturales de la columna cervical según el género.
  - Determinar la relación entre los TTM y la presencia de las alteraciones posturales de la columna cervical.

2.8. HIPÓTESIS.

2.8.1. HIPÓTESIS GENERAL:
El personal asistencial del Departamento de Odontología del Hospital Militar Central con Trastornos Temporomandibulares presentan mayor frecuencia de alteraciones posturales de la columna cervical que aquellos sin TTM

2.9. OPERALIZACIÓN DE VARIABLES

Consultar capítulo completo en:

Trastornos temporomandibulares y alteraciones posturales de la columna cervical en personal asistencial del departamento de odontología del Hospital Militar Central
CAPÍTULO III. MATERIALES Y MÉTODOS

3.1. TIPO DE INVESTIGACIÓN

El estudio es de tipo transversal y descriptivo

Transversal: Porque se estudia una o mas variables en un determinado momento, haciendo un corte en el tiempo con relación a como se presentan los acontecimientos

Descriptivo: Ya que observa la situación de las variables, su presencia o ausencia

3.2. POBLACIÓN Y MUESTRA

3.2.1. UNIVERSO

Estuvo constituido por todo el personal asistencial de 20 a 40 años que laboran en el
3.2.2. MUESTRA
La unidad muestral estuvo conformado por el personal asistencial de 20 a 40 años que laboran en el Departamento de Estomatología del Hospital Militar Central que cumplieron los criterios de inclusión y exclusión.

3.2.3. UNIDAD DE ANÁLISIS U OBSERVACIÓN
Está constituida por las estructuras funcionales del sistema estomatológico en los pacientes, así como la disposición postural de la columna cervical de los pacientes mencionados.

3.2.4. TIPO DE MUESTRA
Es del tipo no probabilístico de la modalidad intencional o por conveniencia.

3.2.5. CRITERIOS DE INCLUSIÓN
- Pacientes entre las edades de 20 y 40 años de ambos géneros
  - Pacientes lúcidos, localizados en tiempo, espacio y persona
  - Pacientes que acepten voluntariamente formar parte del estudio

3.2.6. CRITERIOS DE EXCLUSIÓN
- Pacientes con tratamientos ortodónticos
  - Pacientes con tratamiento kinesiológico,
  - Paciente con lesiones cráneo cervicales
  - Pacientes con problemas de orden sistémico como artritis reumatoide, cáncer o fibromialgia, así como enfermedades que se mimetizan con los TTM: oitis, sinusitis, neuralgia del trigémino, migrañas, tendinitis temporal, infecciones orofaringeas, síndrome de Eagle
  - Pacientes con obstrucción de las vías aéreas superiores
  - Pacientes que hayan tenido antecedentes de traumatismo a nivel de los músculos del sistema masticatorio
  - Pacientes con sintomatología de pericoronitis por erupción de la tercera molar
  - Pacientes que se encuentran en planes de cirugía o que hayan sido tratados quirúrgicamente a nivel de la región cervical.
  - Pacientes embarazadas.
- Pacientes con ansiedad anormal (escala de autovaloración por el Dr. Zung) o que sean mayores de 50 puntos en el índice EAA.

3.2.7. TAMAÑO DE LA MUESTRA.

Se examinaron 51 personas de un universo que estuvo conformado 89 personas que conforman el personal asistencial del Departamento de Odontología del Hospital Militar Central

3.3. MATERIALES.

3.3.1. RECURSOS.

**Recursos Humanos**
- Tesista de la Facultad de Odontología de la Universidad Nacional Mayor de San Marcos, Interno del Hospital Nacional Arzobispo Loayza.
- Asesor de Tesis Consultor; Docente de la Facultad de Odontología de la Universidad Nacional Mayor de San Marcos Dr. Carlos Villafana Mori
- Asesor para el análisis Estadístico;
- 51 personas seleccionados para el estudio que conforman el personal asistencial del Departamento de Odontología del Hospital Militar Central.

**Fichas de recolección de datos**
- Indice de Krogh Poulsen
- Análisis radiográfico utilizando la técnica de Penning.

**Instrumental y equipo de examen**
- Unidad Dental
- Esterilizadores
- Equipo de Rx panorámico - cefalométrico
- 10 espejos bucales
- 200 pares de guantes
- 50 mascarillas
- 2 litros de sablón
- 1 litro de alcohol yodado
- Placas radiográficas cefalométrica 8 x 10 pulgadas
- Fijador
- Revelador
- Papel canson
- 02 lápices
- 02 lapiceros
- Computadora
- Calculadora
- Cámara Fotográfica
- 01 caja de campos descartables
- 01 algodonero
- 01 estetoscopio
- Regla
- 02 carretes de Hilo dental
- Recursos Institucionales

El estudio se realizó en el Departamento de Odontología del Hospital Militar Central que cuenta con las instalaciones y los equipos adecuados, la población requerida y material necesario para realizar la investigación.

3.3.2. FINANCIACIÓN.

Los gastos realizados en el trabajo de investigación han sido cubiertos por el propio investigador.

3.4. MÉTODOS.

3.4.1. PROCEDIMIENTOS Y TÉCNICAS.

Método de recolección:

1.-Fue realizado por el entrevistador-examinador-investigador
2.-Fue calibrado con la debida anterioridad para tal efecto.
3.-La recolección de datos fue realizada de la siguiente manera:
   a.-Anamnesis
   b.-Examen Clínico
   c.-Examen radiológico y Análisis de la postura cervical

Instrumento de recolección de datos.
CAPÍTULO III. MATERIALES Y MÉTODOS

Los datos obtenidos del interrogatorio, examen clínico y el examen radiológico se consignaron en la ficha confeccionada basada en el Índice de Krogh Poulsen (ver anexo 03) para los propósitos de la investigación la ficha constó de las siguientes partes

1. Datos Generales: Que contienen los datos de identificación: nombre, edad, sexo.

2. Anamnesis y examen clínico: donde se consignó los datos necesarios para la inclusión y exclusión al estudio (Anexo 02); la presencia de TTM se determinó por los datos obtenidos del interrogatorio y del examen clínico que se consignó en la ficha confeccionada basada en el índice de Krogh Poulsen (Anexo 03)

3. La postura cervical de los participantes fue determinada a través de un análisis radiográfico utilizando la técnica de Penning, y se consignó en la ficha confeccionada para tal fin (Anexo 04), donde se especifica la técnica para la toma radiográfica, así como del esquema del trazado de la técnica de Penning

3.4.2. RECOLECCIÓN DE DATOS.

Calibración de los procedimientos clínicos

Para los procedimientos clínicos, el investigador fue calibrado previamente en los índices a ser usados (anexos 2 y 3) con el Dr. Carlos Villafana Mori, Cirujano Dentista, Docente y Responsable del Curso de Oclusión II Departamento Académicos de Estomatología Rehabilitadora de la Facultad de Odontología de la UNMSM, consultor y asesor del presente trabajo de investigación; para los procedimientos clínicos

Para los procedimientos radiográficos, el investigador fue calibrado (anexo 04) por el Dr. Huber Vilcapoma Ramón, Cirujano Dentista, Jefe del Servicio de Radiodiagnóstico Oral del Departamento de Odontología del Hospital Militar Central

Procedimiento.

Para la recolección de datos se contó con el investigador que hizo la función de entrevistador – examinador, se efectuó una prueba piloto del procedimiento con el fin de determinar la eficacia de la ficha y de la habilidad del investigador

El investigador previamente capacitado, entrevistó a los pacientes; los que fueron seleccionados para el estudio a través de la ficha de exclusión confeccionada para tal fin (Anexo 02).

Esta ficha de exclusión constó de dos partes; la primera parte, la cual consistía en una evaluación anamnesia de 20 preguntas las que fueron formuladas por el investigador al paciente. Para que el paciente pase a la segunda parte de la evaluación debió de contestar negativamente cada una de las preguntas.

La segunda parte de esta ficha de exclusión constó de una escala para obtener la clasificación de ansiedad del paciente (Escala de Autovaloración de Ansiedad por el Dr. Zung); esta fue llenada por el paciente, después del cual el investigador coloco el puntaje obtenido en cada respuesta de acuerdo a la guía de puntuación (Anexo 05); la puntuación total se convirtió al índice EAA (Escala de Auto evaluación de la ansiedad) basada en 100 puntos (Anexo 06); luego del cual se procedió a la catalogación del
paciente (Anexo 07) debiendo de estar dentro de los límites normales o menor de 50 en el índice EAA

Los pacientes que pasaron la prueba de exclusión fueron sometidos al índice de Krogh Poulsen (Anexo 03) para el diagnostico de TTM; luego de esto se tomará la telerradiografía lateral de la región cervical a través de la técnica ya explicada.

Posteriormente se realizó los trazos de modo que se pueda obtener los datos necesarios para el diagnóstico de la alteración cervical y se anotó en la ficha confeccionada para este fin (Anexo 04).

Antes de haberse realizado el procedimiento descrito, el paciente firmo la hoja de consentimiento informado para participar en el estudio.

Los datos adicionales fueron llenados por el operador durante el examen clínico. Durante la evaluación se resolvió las dudas que el paciente tuvo con relación al cuestionario

La revisión de los pacientes se llevó a cabo el día y hora de la cita de los mismos; mientras que la evaluación de los trazos y medidas hechas en la teleradiografía se realizaron posteriormente.

El investigador coordinó con las autoridades pertinentes para que las actividades programadas fueran hechas sin interrupción.

**Análisis de resultados.**

Una vez recolectado los datos se revisaron cada una de las fichas verificando que estén consignados todos los datos. Luego, los datos obtenidos fueron clasificados según el indicador, y luego tabulados por computadora. El recuento de datos obtenidos se realizó manual y electrónicamente; para finalmente presentar esta información por medio de tablas y gráficas.

Se empleó tablas generales y tablas específicas y como complemento de estas tablas, gráficas (barras).

**Análisis de Datos**

El procesamiento estadístico de los datos obtenidos se realizó recurriendo a la estadística descriptiva y la estadística diferencial no paramétrica. El tipo de estudio (descriptivo) y la naturaleza cualitativa de las variables determinaron las pruebas estadísticas a usar.

Para determinar si la hipótesis es verdadera o falsa se aplicó una prueba de significancia estadística no paramétrica como el CHI cuadrado (χ²), las relaciones serán significativas cuando p≤ a 0.05. El análisis estadístico y los gráficos se realizaron utilizando el programa SPSS, también se utilizó el programa Excel para elaborar los cuadros y diseñar gráficos.
CAPÍTULO IV. RESULTADOS

4.1. DESCRIPCIÓN ESTADÍSTICA.

FRECUENCIA DE TRASTORNOS TEMPOROMANDIBULARES (TTM)

TABLA N° 1. Frecuencia de los TTM en la muestra estudiada

<table>
<thead>
<tr>
<th>TTM</th>
<th>F</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTM</td>
<td>26</td>
<td>50.9</td>
</tr>
<tr>
<td>Sin TTM</td>
<td>25</td>
<td>49.1</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>100%</td>
</tr>
</tbody>
</table>

El 50.9% presentó Trastornos Temporomandibulares; mientras que el 49.1% del total de la población no presentó Trastornos Temporomandibulares (Tabla N° 1, gráfica N° 1)
Trastornos temporomandibulares y alteraciones posturales de la columna cervical en personal asistencial del departamento de odontología del Hospital Militar Central

Gráfico N°1: Frecuencia de los TTM en la muestra estudiada

RELACIÓN ENTRE TTM Y LA EDAD

Tabla N° 2: Relación entre los TTM y la edad.

<table>
<thead>
<tr>
<th>EDAD</th>
<th>TTM</th>
<th>Sin TTM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>20</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>30-40</td>
<td>6</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>54,5%</td>
<td>45,5%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Al relacionar los Trastornos Temporomandibulares (TTM) con la edad se encontró que la prevalencia de TTM no ha sido de significativo incremento en los grupos etáreos; así, el correspondiente a 20 –29 años agrupó a 20 (50%) individuos con TTM, el rango de 30 a 40 años agrupó a 6(54.5%) individuos con TTM, estas diferencias no fueron significativas a la prueba del Chi cuadrado. (Tabla N°2 Gráfica N°2)
Gráfico N° 2. Relación entre los trastornos temporomandibulares y la edad

RELACIÓN ENTRE TTM Y SEXO

Tabla N°3: Relación entre TTM y sexo

<table>
<thead>
<tr>
<th>SEXO</th>
<th>masculino</th>
<th>Femenino</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTM</td>
<td>8</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>Sin TTM</td>
<td>5</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>38</td>
<td>51</td>
</tr>
</tbody>
</table>

100% 100% 100%

Al relacionar los Trastornos Temporomandibulares (TTM) con el género se encontró lo siguiente: el sexo masculino presento a 8 (61.5%) individuos con TTM; mientras que el sexo femenino presento 18 (47.3%) personas con TTM, estas diferencias no fueron significativas. (Tabla N°3 Gráfica N°3)
Trastornos temporomandibulares y alteraciones posturales de la columna cervical en personal asistencial del departamento de odontología del Hospital Militar Central

Gráfica N°3: Relación entre TTM y sexo

FRECUENCIA DE ALTERACIONES DE LA POSTURA CERVICAL

Tabla N° 4: Frecuencia de las alteraciones de la postura cervical en la muestra estudiada

<table>
<thead>
<tr>
<th>Alteraciones de la curvatura cervical</th>
<th>F</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (Lordosis Fisiológica)</td>
<td>13</td>
<td>25.4%</td>
</tr>
<tr>
<td>Anormal Cífótica</td>
<td>11</td>
<td>74.6%</td>
</tr>
<tr>
<td>lordótica</td>
<td>1</td>
<td>1.9%</td>
</tr>
<tr>
<td>Rectificada</td>
<td>26</td>
<td>51.2%</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>100%</td>
</tr>
</tbody>
</table>

Del total de la muestra, el 74.6% presentó una postura anormal de los cuales, el 51.2% lo compone la postura cervical rectificada; el restante 25.4% presentó una postura Cervical normal (lordosis fisiológica); Tabla N°4 Gráfica N°4.
Gráfico N°4: Frecuencia de las alteraciones de la postura cervical en la muestra estudiada

FRECUENCIA DE ALTERACIONES POSTURALES DE LA COLUMNA CERVICAL SEGÚN EDAD

Tabla N°5: Frecuencia de las alteraciones posturales de la columna cervical según edad

<table>
<thead>
<tr>
<th>Alteraciones de la Postura de la Columna Cervical</th>
<th>Edad</th>
<th>Normal</th>
<th>Anormal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lordosis Fisiológica)</td>
<td>20-29</td>
<td>9</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22,5%</td>
<td>25,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td></td>
<td>30-40</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36,3%</td>
<td>9,0%</td>
<td>9,0%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>13</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25,4%</td>
<td>21,5%</td>
<td>1,9%</td>
</tr>
</tbody>
</table>

Al relacionar las alteraciones de la postura cervical con la edad se encontró lo siguiente: en ambos grupos etáreos se observa una mayor frecuencia de postura anormal; en el grupo etáreo de 20 a 29, la frecuencia de postura anormal fue de 21 (77.5%) individuos, de los cuales el tipo rectificado posee la mayor frecuencia: 21(52.5%) personas, seguido de la clase cifótica con 10(25%) individuos; en este mismo grupo etáreo la clase con postura normal fue de 9 (22.5%) individuos.

El rango etáreo de 30 a 40 la frecuencia de postura anormal fue de 7 (63.7%) individuos, de los cuales el tipo rectificado posee la mayor frecuencia fue de 5 (46.9%) personas; seguido de la clase Cifótica y Lordótica, ambos con 2 (9%) individuos; en este mismo grupo etáreo la clase con postura normal fue de 4 (36.3%) individuos. Estas diferencias no fueron significativas a la prueba de Chi cuadrado (Tabla N°5 Gráfica N°5)
Gráfica N°5: Frecuencia de las alteraciones posturales de la columna cervical según edad

FRECENCIA DE LAS ALTERACIONES POSTURALES DE LA COLUMNA CERVICAL SEGÚN GÉNERO

Tabla N°6: frecuencia de las alteraciones posturales de la columna cervical según género

<table>
<thead>
<tr>
<th></th>
<th>Alteraciones de la Postura de la Columna Cervical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Normal)</td>
</tr>
<tr>
<td></td>
<td>Lordosis Fisiológica</td>
</tr>
<tr>
<td>Masculino</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>23,0%</td>
</tr>
<tr>
<td>Femenino</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>26,3%</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>25,4%</td>
</tr>
</tbody>
</table>

Al relacionar las alteraciones de la postura cervical con el género se encontró lo siguiente: en ambos grupos de género se observó una mayor frecuencia de postura anormal; en el grupo masculino, la frecuencia de postura anormal fue de 10 (77%) individuos, de los cuales el tipo rectificado posee la mayor frecuencia: 7 (53,8%) personas, seguido de la clase Cifótica con 2 (15,3%) individuos; en este mismo grupo la clase con postura normal fue de 3 (23,0%) individuos.

En el grupo femenino la frecuencia de postura anormal fue de 28 (74,6%) individuos, de los cuales el tipo rectificado posee la mayor frecuencia fue de 19 (50%) personas; seguido de la clase con postura normal fue de 10 (26,3%) individuos. Estas diferencias no fueron significativas a la prueba de Chi cuadrado Tabla N°6 Gráfica N°6)
Gráfica N°6: frecuencia de las alteraciones posturales de la columna cervical según género

RELACIÓN ENTRE LOS TTM Y LA PRESENCIA DE LAS ALTERACIONES POSTURALES DE LA Columna Cervical

Tabla N°7: Relación entre los TTM y la presencia de las alteraciones posturales de a columna cervical

<table>
<thead>
<tr>
<th>TTM</th>
<th>Alteraciones de la Postura de la Columna Cervical</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal (Lordosis Fisiológica)</td>
<td>Cifótica</td>
</tr>
<tr>
<td>TTM</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>26,9%</td>
<td>15,3%</td>
</tr>
<tr>
<td>Sin TTM</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>24,0%</td>
<td>28,0%</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>25,4%</td>
<td>21,5%</td>
</tr>
</tbody>
</table>

Al relacionar los trastornos temporomandibulares (TTM) con las alteraciones de la postura cervical se encontró lo siguiente: En ambos grupos, con y sin TTM se observó una mayor frecuencia de postura anormal; en el grupo con TTM, la frecuencia de postura anormal fue de 29(73.1%) individuos, de los cuales el tipo rectificado posee la mayor frecuencia: 14(53.8%) personas, seguido de la clase Cifótica con 4(15.3%) individuos; en este mismo grupo la clase con postura normal fue de 7 (26.9%) individuos.

En el grupo sin TTM, la frecuencia de postura anormal fue de 19(56%) individuos, de los cuales el tipo rectificado posee la mayor frecuencia fue de 12(48%) personas; seguido de la clase Cifótica con 7 (28%) individuos; en este mismo grupo la clase con postura normal fue de 6 (24%) individuos. Estas diferencias no fueron significativas a la prueba de Chi cuadrado (Tabla N°7 Gráfica N°7)

"Programa Cybertesis PERÚ - Derechos son del Autor"
Trastornos temporomandibulares y alteraciones posturales de la columna cervical en personal asistencial del departamento de odontología del Hospital Militar Central

Gráfica N°7: Relación entre los TTM y la presencia de las alteraciones posturales de la columna cervical

4.2. ANÁLISIS ESTADÍSTICO

Al relacionar los trastornos temporomandibulares con la edad mediante la prueba estadística no paramétrica del Chi cuadrado no se halla relación estadísticamente significativa tabla N° 8, por lo que decide aceptar la hipótesis nula y rechazar la hipótesis de la investigación. Concluyéndose que los TTM no están influenciados por la edad.

Tabla N° 8 prueba estadística del Chi cuadrado para relacionar los TTM con la edad

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>G.L.</th>
<th>Significancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi cuadrado</td>
<td>0.071</td>
<td>1</td>
<td>0.789</td>
</tr>
</tbody>
</table>

P>0.05

Al relacionar los trastornos temporomandibulares con el sexo mediante la prueba estadística no paramétrica del Chi cuadrado no se halla relación estadísticamente significativa tabla N° 9, por lo que decide aceptar la hipótesis nula y rechazar la hipótesis de la investigación. Concluyéndose que los TTM no están influenciados por el sexo.

Tabla N° 9 prueba estadística del Chi cuadrado para relacionar los TTM con el sexo.


**CAPÍTULO IV. RESULTADOS**

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>G.L.</th>
<th>Significancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi cuadrado</td>
<td>0.778</td>
<td>1</td>
<td>0.378</td>
</tr>
</tbody>
</table>

P > 0.05
Al relacionar las alteraciones posturales de la columna cervical con la edad mediante la prueba estadística no paramétrica del Chi cuadrado no se hallo relación estadísticamente significativa, tabla N° 10. por lo que decide aceptar la hipótesis nula y rechazar la hipótesis de la investigación. Concluyéndose que los TTM no están influenciados por la edad.

**Tabla N° 10 prueba estadística del Chi cuadrado para relacionar las alteraciones posturales con la edad**

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>G.L.</th>
<th>Significancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi cuadrado</td>
<td>5.383</td>
<td>3</td>
<td>0.146</td>
</tr>
</tbody>
</table>

P > 0.05
Al relacionar las alteraciones posturales con el sexo mediante la prueba estadística no paramétrica del Chi cuadrado no se hallo relación estadísticamente significativa, tabla N° 11. por lo que decide aceptar la hipótesis nula y rechazar la hipótesis de la investigación. Concluyéndose que los TTM no están influenciados por el sexo.

**Tabla N° 11 prueba estadística del Chi cuadrado para relacionar las alteraciones posturales con el sexo.**

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>G.L.</th>
<th>Significancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi cuadrado</td>
<td>3.300</td>
<td>3</td>
<td>0.348</td>
</tr>
</tbody>
</table>

P > 0.05
Al relacionar el TTM con las alteraciones posturales mediante la prueba estadística no paramétrica del Chi cuadrado no se hallo relación estadísticamente significativa, tabla N° 12. por lo que decide aceptar la hipótesis nula y rechazar la hipótesis de la investigación. Concluyéndose que los TTM no están influenciados por la postura cervical.

**Tabla N° 12 prueba estadística del Chi cuadrado para relacionar las alteraciones posturales con el sexo.**

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>G.L.</th>
<th>Significancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi cuadrado</td>
<td>3.300</td>
<td>3</td>
<td>0.348</td>
</tr>
</tbody>
</table>

P > 0.05
Trastornos temporomandibulares y alteraciones posturales de la columna cervical en personal asistencial del departamento de odontología del Hospital Militar Central
CAPÍTULO V. DISCUSIÓN

El presente trabajo de investigación se halló un 50.9% de TTM. Esta prevalencia es menor de lo encontrado por Ariano (42) 77.3%, Valdivia (43) 89.4%, Paredes (44) 86.25 %, Nugent (46) 87.17%; Paredes (47), 85.09% y Gamboa (35) 99.2%; cuyas muestras fueron de amplio rango etáreo; entre 17-65 años aproximadamente a diferencia del presente trabajo cuya muestra estuvo formado por un rango etáreo de 20 a 40. El resultado encontrado esta más próximo a lo hallado por Arroyo (39) 46.8%, Solber (74) 26% y Pulliger (75) 39% cuyas metodologías incluyeron una muestra con individuos jóvenes cuyo rango etáreo estuvo próximo al del presente trabajo. Esta baja prevalencia se explicaría por la edad de los individuos de la muestra, ya que según Castro (72) los adultos jóvenes y niños presentan un alto nivel de adaptación a los TTM; otros estudios afirman que existe una mayor significancia de signos y síntomas de TTM en grupos de mayor edad (73)

Al relacionar los TTM y la edad se encontró que los pacientes ubicados en el rango etáreo 20-29 tenían una incidencia de 50% de TTM; este porcentaje se incremento muy ligeramente con la edad; es así que en grupo etáreo 30-40 se encontró una incidencia de 54.5% de TTM; aunque no muy significativo estadísticamente P > 0.05.

Al relacionar los TTM con el sexo. En el grupo masculino se encontró una mayor incidencia de TTM con 61,5% mientras que en el grupo femenino se encontró una menor incidencia de TTM con 47.3%; no existiendo relación estadísticamente significativa P > 0.05 entre los TTM y el sexo. Este resultado contradice los resultados obtenidos por otros trabajos donde es común encontrar una mayor incidencia en el grupo femenino, como lo
hallado por Paredes(44) con 97.3%, Gamboa (35) 100%, Arroyo (39) 60%, Paredes (47) 86%, etc.

Con respecto a la distribución de los TTM según el sexo y la edad, clásicamente se describe una mayor incidencia en mujeres, aunque en los últimos años la proporción mujeres / varones afectados ha disminuido, existiendo incluso estudios que demuestran que no existen diferencias entre ambos sexos(47)(76), siendo su manifestación más frecuente en las edades medias de la vida (40).

La frecuencia de la postura cervical anormal fue de 75.5 %, esta prevalencia es similar a lo encontrado por Fuentes (21) 70%, Henriquez (9) 80% y Sandoval V (18) con 65%. Hay que tener en cuenta que estos tres estudios fueron realizados en adultos jóvenes con un rango etario próximo al del presente trabajo.

De estos datos podemos rescatar que existe una frecuencia mayor de alteraciones posturales de la columna cervical; destacando en la investigación la postura rectificada, con 51.2% del total; situación similar sucede en lo encontrado por Henriquez (9) con un 57.8% a diferencia de Fuentes (21) cuya mayor frecuencia fue de cifosis con un 35% seguida de rectificación con 33.3%

Esta postura rectificada la columna cervical, de acuerdo a la fisiología articular; se debe principalmente a una contracción de los músculos anteriores a la columna cervical. Dentro de los cuales, el largo del cuello, un músculo que se encuentran cerca de la cara anterior del raquis cervical es de mayor importancia. El grupo de músculos que se hayan a distancia del raquis como los supra e infra hióideas tienen una responsabilidad menor (31).

La contracción de estos músculos se pueden deber una función anormal de estos, provocada por factores locales y sistémicos. Los factores locales son las alteraciones que modifican de manera aguda los estímulos sensitivos o de propriocepción así como los traumatismos de estructuras locales. Estos traumatismos podrían deberse también al uso excesivo o inusual de las estructuras(2) tal es el caso de la hiperactividad de los músculos masticatorios que según Yi, Liu Chiao y Col (15) provocan alteraciones posturales de la columna cervical (aumento de la lordosis cervical).

Uno de los factores sistémicos más frecuentes que puede causar alteración en los músculos es el estrés emocional el que se refleja en el estado de ansiedad del paciente y la respuesta psicofisiológica a los factores de estrés de los distintos pacientes puede variar mucho. Entre otros factores sistémicos se encuentra la resistencia inmunológica y el equilibrio del sistema autónomo del paciente. Es probable que los factores constitucionales puedan verse influidos por la edad, sexo, la dieta y la predisposición genética (5,50 de gamboa)

Al relacionar las alteraciones de la postura cervical con la edad se encontró que en el rango etario de 20 a 29 años obtuvo un 77.5% con postura anormal, ligeramente cercano a lo encontrados por Fuentes (21) 70%, Henriquez (9) 80% y Sandoval V (18) con 65%. Cuyas muestras se hallaban entre los 19 a 24 años. Dentro de este mismo grupo etario el tipo rectificado obtuvo una mayor frecuencia con 52.5%. Este resultado se encuentran cercanos a lo encontrado por Henriquez (9) con un 57.8%. Pero diferente a Fuentes (21) cuya mayor frecuencia fue de cifosis, con un 35% seguida de rectificación con 33.3%.
El rango etáreo de 30 a 40 la frecuencia de postura anormal fue de 63.7% individuos, de los cuales el tipo rectificado posee la mayor frecuencia fue de 45.7%. No existen trabajos que con muestras que incluyan pacientes con edades próximas a este rango; La tendencia de este rango es similar al del rango 20 a 29 años; con una alto porcentaje de casos con postura anormal; y dentro de las posturas anormales es de mayor porcentaje la postura rectificada. Estas diferencias no fueron significativas a la prueba de Chi cuadrado (P>0.05), al relacionar las posturas cervicales con la edad.

Al relacionar las alteraciones de la postura cervical con el género se encontró lo siguiente: En ambos grupos de género se observa una mayor frecuencia de postura anormal; en el grupo masculino, la frecuencia de postura anormal fue del 77%, de los cuales el tipo rectificado posee el mayor porcentaje, con 53.8%, seguido de la clase Cífotica con 15.3%. Estos resultados fueron similares a lo encontrado por Henríquez (9) con 80% de postura anormal y un 57.8% del rectificado en el grupo masculino.

En el grupo femenino la frecuencia de postura anormal fue de 74.6% individuos, de los cuales el tipo rectificado posee el mayor porcentaje, con 50% personas. Estos resultados coinciden a lo hallado por Yi, Liu Chiao(15) con un mayor porcentaje de postura anormal, pero difiere en que dentro de este grupo el tipo lordótico ocupa la mayor frecuencia con un 60%. No se encontró relación estadísticamente significativa entre los las alteraciones posturales de la columna cervical y el sexo.

Al relacionar los trastornos temporomandibulares (TTM) con las alteraciones de la postura cervical se encontró que en ambos grupos, con y sin TTM se observa una mayor frecuencia de postura anormal; en el grupo con TTM, la frecuencia de postura anormal fue de 73.1%, de los cuales el tipo rectificado posee la mayor frecuencia con 53.8%, seguido de la clase Cífotica con 15.3%; en este mismo grupo la clase con postura normal fue de 26.9%; estos resultados se encuentran ligeramente próximo a lo encontrado por Munhoz, WC.(4) que hallo que los pacientes con TTM presentaban un 61.8% con postura cervical anormal; de los cuales un 41.1% tenían una postura rectificada; el 20.7% postura lordótica y un 37.9% con postura normal. Esta comparación nos a concluir que en ambos estudios existe un leve predominio de la postura anormal; y dentro de esta de la postura rectificada.

Dentro del grupo sin TTM, la frecuencia de postura anormal fue de 56%; de los cuales el tipo rectificado posee la mayor frecuencia con 48%; estos resultados también son diferentes a lo encontrado por Munhoz, WC.(4) que hallo que los pacientes sin TTM presentaban un 89.5% con postura cervical anormal de los cuales un 79% tenía una postura rectificada; 10.5% una postura lordótica y solo un 10.5% presentaba una postura cervical normal. Esta comparación nos da entender que existe un leve predominio de la postura anormal; y dentro de esta de la postura rectificada.

Entre los grupos con TTM y sin TTM se encontró la misma tendencia, donde ambos presentaba una mayor cantidad de casos con postura anormal, de los cuales la clase rectificada era la que primaba; No se encontró relación estadísticamente significativa entre las las alteraciones posturales de los TTM. Este resultado es diferente de lo encontrado por Vieira D. (7), que afirma que existe interrelación entre los pacientes con TTM y desvíos posturales, como aumento de la lordosis cervical; lo mismo que Carossa,
S (68) que concluye que los pacientes con disfunción del raquis cervical presentan una mayor prevalencia de TTM; lo mismo que Knutson GA (71) que concluyó que los TTM puede causar disfunciones del raquis cervical alto (occipital-atlas) así como cambios biomecánicos musculares y cervicales que pueden hacerse visibles a la examinación radiográfica; o lo encontrado por Evcik D. y col (20) Concluyeron que la postura alterada causa desequilibrio muscular que se relaciona altamente con los TTM.

Así como existen trabajos cuyas conclusiones discrepan de lo encontrado en el presente trabajo; existen investigadores que obtuvieron resultados similares, tal es el caso de Munhoz, WC.(4) y Wijer A. (69 ) que no apoyan el concepto teórico que los desórdenes cervicales de la espina dorsal pueden dar lugar a TTM.
CAPÍTULO VI. CONCLUSIONES

- La frecuencia de pacientes con TTM en la muestra examinada fue de 50.9%.

- No se hallaron diferencias significativas para los trastornos temporomandibulares según la edad ni el sexo (P > 0.05); pero dentro de la edad; el grupo etáreo que presentó mayor frecuencia fue el rango de 30 a 40 años con 54.5% de TTM; mientras que dentro del género, el grupo que presento mayor frecuencia fue el sexo masculino con 61.5% de TTM.

- La frecuencia de pacientes con posturales cervical anormal en la muestra examinada fue de 75.5 %; la mayor frecuencia entre las posturas cervicales anormales fue de la postura cervical rectificada, con 51%.

- No se hallaron diferencias significativas para la alteración de la postura cervical según la edad ni el sexo (P > 0.05); pero dentro de la edad; en ambos grupos etáreos se observó una mayor frecuencia de postura anormal y dentro de estas la que destaco fue la postura rectificada; en el grupo etario de 20 a 29 obtuvo la mayor frecuencia de postura anormal con 77.5% de los cuales el tipo rectificado posee un 52.5% del total; mientras que dentro del género, se observa la misma tendencia, donde en ambos grupos de géneros se observó una mayor frecuencia de postura anormal y dentro de estas destaco la postura rectificada; el grupo masculino obtuvo la mayor frecuencia de postura anormal con un 77% individuos, de los cuales el tipo rectificado posee la mayor frecuencia con 53.8%.

- La frecuencia de postura anormal en pacientes con TTM fue de 73.1%, dentro de
los cuales primaba la postura rectificada con 53.8%; mientras que en los pacientes sin TTM con fue de 56% dentro de los cuales postura rectificada obtuvo el mayor porcentaje con 48%. Esto confirma que no existe relación significativa entre los trastornos temporomandibulares y las alteraciones posturales cervical en la muestra estudiada.
CAPÍTULO VII. RECOMENDACIONES

A partir de los resultados de la presente investigación se recomienda los siguiente:

- No habiéndose encontrado relación estadísticamente significativa, entre los TTM y la postura cervical. sería recomendable afianzar este resultado a través de estudios que relacionen ambos aspectos en poblaciones y grupos etáreos mas amplios, con estudios analíticos, longitudinales y descriptivos

- Realizar estudios similares usando el índice de Helkimo para determinar la relación con las posturas cervicales y los TTM en sus diferentes severidades; ya que existen trabajos que encuentran diferencias estadísticas en grupos con TTM severo.

- Efectuar estudios que relacionen la postura de la cabeza, hioides, mandíbula, etc. con los TTM; ya que donde se desenvuelven estos problemas posturales se encuentran anatómicamente mas cerca; por tanto pueda que exista una relación más significativa; y así poder evaluar la presunción teórica afirmada por muchos autores. Ya que a través del presente estudio se verifico la frecuente presencia de las alteraciones posturales así como de TTM convirtiéndolas en enfermedades muy comunes.
Trastornos temporomandibulares y alteraciones posturales de la columna cervical en personal asistencial del departamento de odontología del Hospital Militar Central


VIEIRA, D; PAULA, A; DENSER, G; PESSOA, T.: La importancia de la evaluación postural en el paciente con disfunción de la articulación temporomandibular Acta ortop. bras. v.12 n.3São Paulo jul./sep. 2004

FARIAS, A; ALVES, V; GANDELMAN, H.: Estudo da relação entre a disfunção da
artícula temporomandibular e as alterações posturais. Rev. odontol. UNICID;13(2):125-133, maio-agro. 2001. ilus


"Programa Cybertesis PERÚ - Derechos son del Autor"
NETO, J.; MARCELO, C.; LUIS, H.; Alteraciones posturales en atletas brasileños del sexo masculino que participaron en pruebas de potencia muscular en competiciones internacionales. Rev Bras Med Esporte vol.10no.3 Niterói May /June 2004
GAMBOA, Y.: Dolor muscular como síntoma principal en pacientes adultos que presentan transtornos temporomandibulares, Tesis de titulacion UNMSM 2004.
CORNEJO, L.: Sensibilidad y especificación del test de krogh poulsen en el diagnóstico de transtornos temporomandibulares. Tesis para optar el grado academico de Magister en Estomatología. UNMSM
ARIANO, G.: Relacion entre la disfunción entre el sistema masticatorio y los contactos dentarios oclusales en los lados mandibulares no funcionales en sujetos con denticiones naturales completas Lima-Perú. Tesis de bachiller UPCH 1984, 66
VALDIVIA, M.: Relacion entre la disfunción dels sistema masticatorio y la usencia de piezas dentarias, según número y tipo de sujetos desdentados parciales. Lima-Perú, Tesis de bachiller UPCH, 1986


PASCO-FONTO, C.: Frecuencia de la disfunción del sistema masticatorio enm la comunidad Rural de Hualis Anexo del Distrito de Marco – Provincia de Jauja, Departamento de junin. Tesis para optar el grado de bachiller en Estomatología, UPCH- Facultad de estomatología, Lima- Perú, 1988


VANDERAS, A.: Relationship between oral Parafunctions and craneomandibular dysfunction and children and adolescents: A review Journal of Dentistry for Children, 1994; sep-dic:

MAGLIONE, H. Disfuncion craneomandibular. Revisiona actualizada de los factores etiopatologicos Circ Odon Arg 1997; 9


GELB H. New Concepts in craniomandibular and chronic pain management. Mosdy –

FREESMEYER WB. Zahnärztliche Funktionstherapie. Hanser-Verlag, München-Wien, 1993


CASTRO REJAS M. Asociación entre el dolor muscular y el tipo de maloclusión en escolares de 6 a 9 años del C.E. “Andrés Avelino Cáceres”, distrito de los olivos. Tesis de Grado UPCH, 1996. Lima – Perú.


PULLIGER AG, SELIGMAN DA. SOLBER WK. Temporomandibular disolver. Part I:


Consultar capítulo en: