Caracterización de tres cepas de *Beauveria brongniartii* (Saccardo) Petch y su virulencia en *Phthorimaea operculella* (Zeller) y *Symmetrischema tangolias* (Gyen).

TESIS Para optar el Título Profesional de: **BIÓLOGO** con mención en MICROBIOLOGÍA Y PARASITOLOGÍA.

MELISA ELISÉE VARGAS FLORES

LIMA - PERÚ 2003
AGRADECIMIENTOS
RESUMEN
ABSTRACT
CAPÍTULO I. INTRODUCCIÓN
CAPÍTULO II. ANTECEDENTES
2.1. Clasificación taxonómica de Phthorimaea operculella y Symmetrischema tangolias.
2.2. Distribución.
2.3. Ciclo de vida.
2.4. Daño.
2.5. Control microbiano.
2.6. Hongos entomopatógenos.
2.6.1. Modo de acción de los hongos entomopatógenos.
2.7. Mecanismos de defensa de los insectos contra los hongos entomopatógenos.
2.7.1. Barreras de resistencia.
2.7.2. Estado fisiológico del insecto.
2.8. Género Beauveria.
2.8.1. Clasificación taxonómica.
2.8.2. Descripción morfológica.
2.8.3. Distribución en el Perú.
2.9. Caracterización morfológica, fisiológica y molecular del género Beauveria.
2.10. Antecedentes de la caracterización morfológica, fisiológica, molecular y de la actividad entomopatógena de los hongos entomopatógenos.
CAPÍTULO III. MATERIALES Y MÉTODOS
3.1. Material biológico.
3.2. Reactivación del patógeno.
3.3. Mantenimiento de las cepas y obtención del inóculo.

3.4. Establecimiento del módulo de crianza.

3.4.1. Crianza de Phthorimaea operculella.

3.4.2. Crianza de Symmetrischema tangolias.

3.5. Caracterización morfológica, fisiológica y molecular de las cepas de B. brongniartii.

3.5.1. Caracterización morfológica de las cepas de B. brongniartii.

3.5.2. Caracterización fisiológica de las cepas de B. brongniartii.

3.5.3. Caracterización molecular de las cepas de B. brongniartii mediante la técnica RAPD.

3.6. Evaluación de la actividad entomopatógena de las cepas de B. brongniartii sobre Phthorimaea operculella y Symmetrischema tangolias.

3.6.1. Efecto de las cepas de B. brongniartii en larvas de primer estadio de P. operculella y S. tangolias.

3.6.2. Efecto entomopatógeno de las cepas de B. brongniartii sobre los estados de desarrollo de P. operculella y S. tangolias.

CAPÍTULO IV. RESULTADOS

4.1. Caracterización morfológica, fisiológica y molecular de las cepas de B. brongniartii.

4.1.1. Caracterización morfológica de las cepas de B. brongniartii.

4.1.2. Caracterización fisiológica de las cepas de B. brongniartii.

4.1.3. Caracterización molecular de las cepas de B. brongniartii mediante la técnica RAPD.

4.2. Evaluación de la actividad entomopatógena de las cepas de B. brongniartii sobre Phthorimaea operculella y Symmetrischema tangolias.

4.2.1. Efecto de las cepas de B. brongniartii en larvas de primer estadio de P. operculella y S. tangolias.

4.2.2. Efecto entomopatógeno de las cepas de B. brongniartii sobre los estados de desarrollo de P. operculella y S. tangolias.

CAPÍTULO V. DISCUSIÓN

5.1. Caracterización morfológica, fisiológica y molecular de las cepas de B. brongniartii.

5.1.1. Caracterización morfológica de las cepas de B. brongniartii.

5.1.2. Caracterización fisiológica de las cepas de B. brongniartii.

5.1.3. Caracterización molecular de las cepas de B. brongniartii mediante la técnica RAPD.
5.1.3. Caracterización molecular de las cepas de *B. brongniartii* mediante la técnica RAPD. . 46

5.2. Evaluación de la actividad entomopatógena de las cepas de *B. brongniartii* sobre *Phthorimaea operculella* y *Symmetrosischema tangolias*. . 47

5.2.1. Efecto de las cepas de *B. brongniartii* en larvas de primer estadio de *P. operculella* y *S. tangolias*. . 47

5.2.2. Efecto entomopatógeno de las cepas de *B. brongniartii* sobre los estados de desarrollo de *P. operculella* y *S. tangolias*. . 49

CONCLUSIONES . . 53

RECOMENDACIONES . 55

BIBLIOGRAFÍA . 57

ANEXOS . 63
Gracias a mis padres Vilma y Abel, quienes siempre se esforzaron para que alcance mis metas trazadas, acompañaron mis desvelos, comprendieron mis ausencias, me brindaron aliento y confianza y sobretodo nunca permitieron que me dé por vencida.
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmetricschema tangolias (Gyen).
AGRADECIMIENTOS

Al Centro Internacional de la Papa (CIP), por brindarme la oportunidad de realizar el presente trabajo.

Al Ph.D. Aziz Lagnaoui, Líder del Proyecto MIP, por la confianza y apoyo depositada en mi persona para la realización del presente trabajo, así como por las sugerencias brindadas.

A la Ms.Sc. Maria Palacios, Asistente Investigador, quien en todo momento me brindó su apoyo, enseñanzas y sugerencias, asesorándome en el presente trabajo.

A la Ms.Sc. Verónica Cañedo, Asistente Investigador, por la revisión, corrección y sugerencias realizadas en el presente trabajo.

Al Biólogo Octavio Zegarra, Asistente Investigador, por su apoyo y sugerencias brindadas para la caracterización molecular de Beauveria brongniartii.

A la Bióloga Genoveva Rossel, Asistente Investigador, por el apoyo y sugerencias brindadas durante la implementación de la técnica RAPD.

Al Sr. Carlos Mendoza, por el apoyo y sugerencias brindadas en la crianza de insectos y bioensayos.

Al Ingeniero Wilmer Pérez, Asistente Investigador, por sus sugerencias para el presente trabajo, así como por su apoyo en la toma de fotografías al microscopio.

A todos mis amigos que siempre me apoyaron con su amistad sincera, quienes con sus palabras me alentaron para no rendirme en mi esfuerzo.
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmetrischema tangolias (Gyen).
Se realizó la caracterización morfológica, fisiológica y molecular de tres cepas de *Beauveria brongniartii*: CIPCa18(85), CIPCu1(44) y CIPH1(1), además de evaluar su actividad entomopatógena en *Phthorimaea operculella* y *Symmetrischema tangolias*.

La cepa CIPCu1(44) presentó conidias redondas, pequeñas y la formación de sinemias, diferenciándose de las cepas CIPCa18(85) y CIPH1(1) que presentaron conidias elipsoidales. El análisis molecular mediante la técnica RAPD permitió determinar que esta cepa estaba genéticamente más relacionada con la cepa de *Beauveria bassiana* CIPLM1 (50.4% de similaridad).

Al evaluar la actividad entomopatógena de las tres cepas en larvas de primer estadío de *P. operculella* y *S. tangolias*, se encontró que utilizando 1×10^9 conidias/ml el porcentaje de mortalidad fue hasta del 100%. Se determinó que para *P. operculella* la CL$_{50}$ de las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) fue 2.71×10^5, 5.53×10^5 y 5.19×10^7 conidias/ml y la CL$_{90}$ fue 6.81×10^6, 1.22×10^7 y 5.97×10^6 conidias/ml, mientras que para *S. tangolias* la CL$_{50}$ para las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) fue 1.16×10^6, 9.37×10^6 y 4.52×10^6 conidias/ml y la CL$_{90}$ fue 6.01×10^7, 1.46×10^9 y 2.17×10^8 conidias/ml respectivamente. En ensayos posteriores se determinó que la cepas de *B. brongniartii* necesitaron mayor tiempo (9-10 días) para que las CL$_{50}$ pudieran causar el 50% de mortalidad a las larvas de primer estadío de *S. tangolias* mientras que sólo necesitaron 3 a 5 días para causar el 50% de mortalidad en *P. operculella*.

Posteriormente se evaluó cada CL$_{50}$ y CL$_{90}$ en huevos, larvas de último estadío y pupas de *P. operculella* y *S. tangolias*, encontrándose que todos los estados de desarrollo fueron susceptibles con diferente grado de infección. En todas estas evaluaciones, la cepa CIPCa18(85) presentó la mejor actividad entomopatógena para el control de *P. operculella* y *S. tangolias*.

RESUMEN

Se realizó la caracterización morfológica, fisiológica y molecular de tres cepas de *Beauveria brongniartii*: CIPCa18(85), CIPCu1(44) y CIPH1(1), además de evaluar su actividad entomopatógena en *Phthorimaea operculella* y *Symmetrischema tangolias*.
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmetrischema tangolias (Gyen).
ABSTRACT

The objective of this research was to carry out morphological, physiological and molecular characterization of three isolates of Beauveria brongniartii: CIPCa18(85), CIPCu1(44) y CIPH1(1). In addition, entomogenous activity was tested in Phthorimaea operculella y Symmetrischema tangolias.

Isolate CIPCu1(44) showed shorter and spherical conidia while isolates CIPCa18(85) y CIPH1(1) showed typical ellipsoidal conidia. RAPD technique showed a relation between isolates CIPCu1(44) and CIPLM1 (B. bassiana) with 50.4% of similarity.

Patogenericity test showed that isolates were effective to first instar larvae, the use of 1 x 10^9 conidia/ml caused until 100% mortality for both insects. CL_{50} for isolates CIPCa18(85), CIPCu1(44) and CIPH1(1) obtained in P. operculella larvae were 2.71 x 10^5, 5.53 x 10^5 and 5.19 x 10^5 conidias/ml and CL_{90} for each isolate were 6.81 x 10^6, 1.22 x 10^7 and 5.97 x 10^6 conidias/ml respectively. CL_{50} for isolates CIPCa18(85), CIPCu1(44) and CIPH1(1) obtained in S. tangolias were 1.16 x 10^6, 9.37 x 10^6 and 4.52 x 10^6 conidias/ml and CL_{90} for each isolate were 6.01 x 10^7, 1.46 x 10^9 and 2.17 x 10^8 conidias/ml respectively.

In other essays, isolates of B. brongniartii needed more time to kill 50% of S. tangolias larvae (9 to 10 days) while isolates of B. brongniartii needed only 3 to 5 days to kill 50% of P. operculella. With CL_{90}, isolates needed about 3 days for both insects.

Finally, each CL_{50} y CL_{90} of three isolates were tested in eggs, last instar larvae and pupae, results showed that all develop stages were susceptible to B. brongniartii. Isolate CIPCa18(85) showed the best entomogenous activity to make control of P. operculella y S. tangolias because it came of the same insect order, we suggest more studies with this isolate in greenhouse.
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmetsischema tangolias (Gyen).
CAPÍTULO I. INTRODUCCIÓN

La papa *Solanum tuberosum* L., considerada entre los cultivos alimenticios de mayor importancia a nivel mundial, constituye en el Perú uno de los componentes básicos en la dieta de la población rural y urbana. La productividad y rentabilidad de este cultivo es seriamente afectada por factores adversos como sequías, heladas y plagas.

Entre las plagas, destacan por el daño que ocasionan “las polillas de la papa”: *Phthorimaea operculella* (Zeller) y *Symmetrischema tangolias* (Gyen), ambas especies ya sea en forma conjunta o aislada causan daños severos tanto en campo como en almacén, cuando no se realiza control alguno o el control es deficiente.

Phthorimaea operculella es la plaga de mayor importancia económica en casi todas las áreas cálidas del mundo donde se cultiva papa, tanto por los daños que causa como por la amplia distribución alcanzada. Estudios realizados en Turquía, Túnez y Argelia revelaron un daño en tubérculos hasta del 86% cuando se almacenaron por tres meses (CIP, 1980). En el Perú, se registraron pérdidas hasta de un 50% en campos donde no fueron tomadas medidas de control adecuadas (CIP, 1983) y 90% en tubérculos almacenados durante cuatro meses.

Symmetrischema tangolias ha incrementado su importancia en los últimos años como insecto plaga principalmente en la región Andina del continente Americano: Bolivia, Colombia y Perú (CIP, 1988). En el Perú, Sánchez y Aquino (1986) la citaron como una especie que ha adquirido singular importancia en la sierra central del país, Palacios *et al.* (1999) la encontraron infestando tanto en el campo como en almacén.
El método de control más utilizado por los agricultores es el químico, cuyo costo varía de acuerdo al nivel de toxicidad, siendo los más baratos y los más utilizados por los agricultores (Tenorio, 1996), afectando la salud del hombre y causando efectos adversos en la naturaleza. Debido a esto se ha incrementado el interés por el uso de métodos alternativos de control, entre los cuales los hongos entomopatógenos constituyen una perspectiva promisoria ya que causan epizootias que juegan un papel importante en la regulación de poblaciones de insectos.

El hongo entomopatógeno Beauveria brongniartii (Saccardo) Petch tiene actividad patogénica sobre diversos órdenes de insectos como Coleoptera, Homoptera, Lepidoptera y Diptera (Society for Invertebrate Pathology, 1999) y tiene amplia distribución en los Andes del Perú, sobre los 2800 m.s.n.m, donde las bajas temperaturas prevalecen (Alcázar et al., 1990) por lo que se constituye en una alternativa para el control de estas plagas. Se han reportado variaciones entre las diferentes cepas de B. brongniartii (Driver y Milner, 1998; Platti et al., 1998) ya que algunos presentan mayor especificidad y eficiencia a ciertas especies de insectos por lo que es importante evaluar las diferentes cepas basándose en criterios morfológicos, fisiológicos y moleculares.

Considerando lo anteriormente mencionado se fijaron los siguientes objetivos para el desarrollo del presente trabajo:

Objetivo General:

- Evaluar las características morfológicas, fisiológicas y moleculares así como la actividad entomopatógena de tres cepas de *Beauveria brongniartii* procedentes de hospederos y localidades diferentes.

Objetivos Específicos:

- Evaluar el efecto entomopatógeno de tres cepas de *B. brongniartii* sobre los diferentes estados de desarrollo de *P. opercul ella* y *S. tangolias* en condiciones de laboratorio.
- Analizar la variabilidad genética de las tres cepas de *B. brongniartii* con marcadores moleculares RAPD (Random Amplified Polymorphic DNA o ADN polimórfico amplificado al azar).
- Comparar las tres cepas de *B. brongniartii* de acuerdo a sus características morfológicas, fisiológicas, moleculares y entomopatógenas.
CAPÍTULO II. ANTECEDENTES

2.1. Clasificación taxonómica de *Phthorimaea operculella* y *Symmetrischema tangolias*.

La clasificación según Essig (1942) citado por Ojeda y Castro (1972) y la corrección en el nombre original de *S. plaesiosema* citado por Hodges y Osmark (1990) es la siguiente:

- **Reino**: ANIMALIA
- **Phylum**: ARTHROPODA
- **Clase**: HEXAPODA
- ** Orden**: LEPIDOPTERA
- **Suborden**: FRENATAE
- **División**: HETERONEURA
- **Superfamilia**: GELECHIOIDEA
- **Familia**: GELECHIIDAE
- **Tribu**: GNORIMOSCHEMINI

Géneros:
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmetrischema tangolias (Gyen).

\[Phthorimaea \] (Meyrick, 1902)
\[Symmetrischema \] (Povolny, 1967)

Especies:
\[Phthorimaea operculella \] (Zeller, 1873)
\[Symmetrischema tangolias \] (Gyen, 1913).

2.2. Distribución.

Phthorimaea operculella es la especie de mayor distribución en el mundo, se la encuentra en América, Europa, Asia y Australia. Es una especie típica de zonas cálidas pero también se le encuentra en zonas frías, como los Andes del Perú, Bolivia, Colombia y Venezuela.

Symmetrischema tangolias es una plaga de la papa propia del área andina, se la encuentra en las zonas altas de Perú, Bolivia y Colombia. En el Perú se halla diseminada en el Valle del Mantaro (Alcázar et al., 1982) afectando hasta un 87% de tubérculos en almacén (Raman, 1980). Se la ha reportado en más del 90% de almacen de papa por debajo de los 3500 m.s.n.m, disminuyendo a mayores altitudes (Ewell et al., 1994).

2.3. Ciclo de vida.

Como todos los lepidópteros, *P. operculella* y *S. tangolias* pasan por cuatro estados de desarrollo: huevo, larva, pupa y adulto.

El huevo de *P. operculella* es de forma oval achatada, presenta una superficie lisa, mide aproximadamente 0.5 mm de largo por 0.4 mm de ancho, mientras que el huevo de *S. tangolias* mide aproximadamente 0.7 mm de longitud y 0.4 mm de diámetro, presentando la superficie del corión esculpida (Figura 1). Para ambas especies, el huevo recién colocado es de color blanco perlado adquiriendo una coloración anaranjada-amarilla y un tono plomizo oscuro cuando se aproxima a la etapa final del desarrollo embrionario.

P. operculella presenta 4 estadios larvales (Raman, 1980; Sánchez y Vergara, 1991; Palacios, 2001) mientras que *S. tangolias* presenta 5 estadios larvales (Sánchez y Aquino, 1986). Las larvas de estas poloillas presentan un cuerpo blando y una longitud de 1 mm al emerger. En el último estadio larval, la larva de *P. operculella* presenta una coloración que varia de rosada a verdosa alcanzando una longitud máxima de 12 mm, mientras que la larva de último estadio de *S. tangolias* presenta una coloración verde celeste con franjas rojizas bien engrosadas y notorias, alcanzando hasta 13 mm de longitud (Figura 2).

Para ambas especies, la pupa es momificada u obtecta, con una coloración marrón
claro casi amarillo y con 5 a 8 mm de longitud para el caso de *P. opercul ella* y una coloración bruno claro brillante y con 7.5 mm de longitud para el caso de *S. tangolias* (Figura 3). Al completar su desarrollo, la larva sale del órgano infestado para formar un capullo con hilos de seda, en el caso de *S. tangolias*, la larva puede empupar en el órgano infestado (tallo o tubérculo).

El adulto de *P. opercul ella* es un microlepidóptero que mide aproximadamente 8 a 10 mm con una envergadura alar promedio de 15 mm (Raman, 1980) y una mancha en el dorso en forma de "X", mientras que *S. tangolias* presenta una expansión alar de 18 mm de longitud, y una mancha triangular marrón oscuro en el margen costal de las alas anteriores (Figura 4).

Según Palacios (2001), *P. opercul ella* se desarrolla bien entre los 13°C y 35°C. A los 14°C su ciclo de vida dura 92 días, a 25°C dura 27 días y a 35°C dura 16.6 días. En zonas altas del Perú con temperatura promedio de 12 a 13°C, el huevo incuba en 21 días, la larva desarrolla en 71 días y la pupa en 36 días, lo que da como resultado un ciclo de vida de 128 días (4.3 meses). En climas cálidos la hembra puede poner hasta 300 huevos, mientras que en zonas frías pone 137.9 huevos. Los adultos pueden vivir de 6 a 30 días.

En cambio *S. tangolias* posee un período de incubación que varía de 7 días (23°C) a 17 días (12°C) mientras que el período de larva varía de 23 días (23°C) a 57 días (12°C). El estado de pupa varía de 14 días (23°C) a 31 días (12°C). El ciclo completo desde que el huevo fue depositado hasta que emerge el adulto puede durar de 44 días (23°C) a 105 días (12°C) lo que permite a la plaga desarrollar de 3 a 5 generaciones al año. La longevidad de los adultos varía de 11 a 30 días. La hembra puede poner de 90 a 250 huevos.

2.4. Daño.

Tanto en *P. opercul ella* como en *S. tangolias*, la larva es la que ocasiona los daños. La larva de *P. opercul ella* mina las hojas y barrena los tubérculos. Debido a los daños ocasionados, los tubérculos se deshidratan ocurriendo invasión de bacterias que causan su pudrición (Sánchez y Vergara, 1991).

En el caso de *S. tangolias* la larva ocasiona daños barrenando tallos y tubérculos (Calvache, 1982). Externamente, se observa el excremento característico en los puntos de entrada en el tallo, marchitando y causando la muerte de la planta. En los tubérculos ocasiona pérdida tanto en peso como en calidad (Figura 5).

2.5. Control microbiano.

El control microbiano consiste en reducir las plagas o mitigar sus efectos por medio de
agentes infecciosos como los virus, rickettsias, bacterias, protozoarios, hongos y nemátodos que causan enfermedades o epizootias entre las plagas (De Bach, 1985; Cisneros, 1995). Estos patógenos existen en la naturaleza como una forma natural de mantener el equilibrio de las poblaciones de la flora y fauna (Torres et al., 1993).

Como ventajas, el control microbiano presenta poca o ninguna patogenicidad para los animales benéficos y para el hombre y poca destrucción del balance natural ya que son específicos. Además, los patógenos pueden persistir en la naturaleza sin aplicación adicional (Kuno et al., 1981). Como desventajas, los patógenos tienen un efecto lento, además de la dificultad de mantener la virulencia por largo tiempo ya que dependen de las condiciones ambientales (Kuno et al., 1981; Cisneros, 1995).

2.6. Hongos entomopatógenos.

Los hongos son microorganismos eucariontes, sin clorofila, pueden ser unicelulares o pluricelulares. Son filamentosos y con paredes celulares que contienen quitina y/o celulosa. Se reproducen sexual o asexualmente con o sin esporas. La reproducción asexual es la más frecuente, involucrando la formación de esporas microscópicas de paredes delgadas llamadas conidias, los cuales se desarrollan en los conidióforos (Pelczar et al., 1982) y se diseminan por el viento, agua u otros agentes (Kuno et al., 1981). El ciclo de vida de un hongo puede dividirse en dos fases: la fase de crecimiento, constituido por el micelio vegetativo, el cual es el más conveniente para un crecimiento rápido y colonización del ambiente, siendo por ello la fase más vulnerable (Bartnicki-García, 1984) y la fase de reposo o latencia constituida por las esporas.

Los hongos entomopatógenos a diferencia de las bacterias y virus entomopatógenos no requieren ser ingeridos para infectar a sus hospederos, ya que su mecanismo de acción es la penetración directa a través del integumento además de poseer un amplio rango de hospederos y de infectar diferentes estados de desarrollo y edades del hospedero (Ferron, 1978). Constituyen el grupo de mayor importancia en el control biológico de los insectos plagas ya que la mayoría de los insectos son susceptibles a estos hongos. Se conocen aproximadamente 100 géneros y 700 especies de hongos entomopatógenos, entre los géneros más importantes están *Metarhizium, Beauveria, Aschersonia, Entomophthora, Zoophthora, Erynia, Eryniopsis, Akanthomyces, Fusarium, Hirutella, Hymenostilbe, Paecilomyces y Verticillium* (Monzón, 2001).

2.6.1. Modo de acción de los hongos entomopatógenos.

El proceso del desarrollo de la enfermedad puede ser dividido en 10 pasos (Roberts y Humber, 1984; Hajek y St Leger, 1994):

1. **Adherencia de la conidia a la cutícula del insecto.** Para penetrar el tegumento externo del hospedero la conidia debe adherirse a la superficie cuticular. La interacción entre la conidia y la cutícula depende de las sustancias mucilaginosas que rodean la
conidia, las enzimas, además de la conformación morfológica del integumento que favorece la germinación de la conidia. Las conidias pueden adherirse al azar de acuerdo a los pliegues intersegmentales o a la rugosidad de la superficie de la cutícula (Fargues, 1984).

2. **Germinación de la conidia en la cutícula del insecto.** La germinación ocurre dentro de un mínimo de 12 horas siendo necesaria una humedad relativa alta (mayor al 90%). Fisiológicamente, la germinación de la conidia es el retorno de la actividad o metabolismo vegetativo (Barthincki-Garcia, 1984). Morfológicamente, la germinación es la emergencia de la célula vegetativa de una conidia, en forma de un tubo germinativo que crece sobre la superficie cuticular formándose un apresorio o penetrando directamente a la cutícula (Fargues, 1984; Barthnicki-Garcia, 1984). La célula apresoria le permite adherirse a la superficie cuticular.

3. **Penetración de la cutícula.** La penetración se produce por un sistema enzimático de lipasas, proteasas y quitinasas liberadas al comienzo de la germinación de la espora (Roberts y Humber, 1984; Gonzáles et al., 2001). Las enzimas tienen un efecto específico sobre cada uno de los componentes de la cutícula, así la epicutícula o capa más externa, formada por lípidos (ácidos grasos y parafina) es desintegradapara las lipasas, la quitinasa desintegra la quitina, sustancia que confiere resistencia y dureza a la cutícula. Así mismo, las proteínas presentes en la cutícula son desintegradas por enzimas proteolíticas producidas por el hongo (Torres et al., 1993).

4. **Crecimiento del hongo en el hemocyte.** El hongo crece en el hemocyte como cuerpos hifales levaduriformes o blastosporas, que se multiplican por gemación (Roberts y Humber, 1984; Hajek y St Leger, 1994).

5. **Producción de toxinas.** Las toxinas producidas por los hongos entomopatógenos son las responsables de la mortalidad del hospedero. Según Hajek y St Leger (1994), el rápido desarrollo del hongo indica que la muerte del insecto ocurre por el crecimiento vegetativo (ruptura de áreas membranosas o esclerotizadas) produciéndose altos niveles de micosis, mientras que la muerte rápida (48 horas o menos) es atribuida a la producción de toxinas (Roberts y Humber, 1984), permitiendo que otros organismos oportunistas invadan el hemocyte resultando en un crecimiento reducido del hongo dentro del hospedero (Roberts y Humber, 1984; Kershaw et al., 1999).

6. **Muerte del insecto.** Esto puede ser antecedido por cambios en el comportamiento del insecto, como contracciones y pérdida de coordinación (Roberts y Humber, 1984).

7. **Desarrollo de la fase micelial.** En esta fase aparecen pequeñas manchas melanizadas en los sitios de infección, observándose en algunos casos una coloración rojiza en el insecto hospedero. Estos insectos sirven de reservorio para los hongos durante períodos de condiciones adversas.

8. **Emergencia del micelio hacia el exterior.** En condiciones de baja o moderada humedad relativa, el hongo continúa en el insecto sin embargo, con alta humedad el hongo crece a través de la cutícula.

9. **Producción de unidades infectivas.** El metabolismo del hongo se reduce, formándose las unidades infectivas o conidias.
10. Dispersión de las unidades infectivas. Esto sucede por medio del agua o el viento.

2.7. Mecanismos de defensa de los insectos contra los hongos entomopatógenos.

2.7.1. Barreras de resistencia.

Las barreras estructurales constituyen la defensa primaria de los insectos contra los patógenos y endoparásitos. Las principales barreras son el rígido exoesqueleto (cutícula) y la membrana peritrófica (Borror et al., 1981) que rodea el bolo alimenticio y protege a las paredes del epitelio intestinal. Los microorganismos que atraviesan estas estructuras y llegan hasta el hemocele deben de superar las defensas activas secundarias como la fagocitosis, encapsulación y melanización, además de la actividad de la enzima lisozima que hidroliza las paredes de las bacterias y de proteínas antibacterianas bloquean el crecimiento de bacterias y hongos (Kuno et al., 1981, Dunn, 1986).

2.7.2. Estado fisiológico del insecto.

La habilidad del hongo para infectar a un insecto puede estar influenciada por el estado fisiológico del hospedero, ya que muchos hongos pueden infectar específicamente a un particular estado de desarrollo como huevos, larvas, pupas o adultos (Boucas y Pendland, 1984). Se cree que la cutícula posee sustancias de inactivación y que algunos de los estados de desarrollo podrían presentar condiciones fisiológicas desfavorables para el hongo (Kuno et al., 1981). Boucas y Pendland (1984) indican que existe una edad de maduración de la respuesta inmune, debido a esto, los primeros estadíos larvales son susceptibles a bajas dosis del hongo (Kuno et al., 1981).

Conforme el insecto desarrolla realiza varias mudas, siendo este proceso un mecanismo importante de defensa (Vandenberge et al., 1998), sin embargo, la cutícula recién mudada es considerada vulnerable al ataque fúngico (Boucas y Pendland, 1984). Hajek y St Leger (1994) demostraron que la baja patogenicidad de un hongo se debe a la naturaleza de la cutícula, es decir su densidad y grosor además del grado de esclererotización.

2.8. Género Beauveria.
2.8.1. Clasificación taxonómica.

Agostino Bassi fue el primer científico en demostrar en 1835 que *Beauveria bassiana* afectaba al “gusano de seda” *Bombyx mori*. A partir de ese momento se han descrito varias especies de *Beauveria*, según sus características morfológicas y genéticas, tales como *B. bassiana*, *B. brongniartii*, *B. amorpha*, *B. vermicola*, *B. velata* y *B. calendonica* (Glare e Inwood, 1998).

La clasificación de *Beauveria brongniartii* según Barnett y Hunter (1998), es la siguiente:

- Reino: FUNGI
- División: MYCOTA
- Subdivisión: EUMYCOTINA
- Clase: DEUTEROMYCETES
- Subclase: HYPHOMYCETES
- Orden: MONILIALES
- Familia: MONILIACEAE
- Género: *Beauveria* Vuillemin
- Especie: *Beauveria brongniartii* (Saccardo) Petch (1926)

2.8.2. Descripción morfológica.

Beauveria brongniartii (Saccardo) Petch posee conidias hialinas, ovoides o cilíndricas, de 2,5-4,5(6) μm de longitud, a veces con base apiculada (Brady, 1979b; Torres et al., 1993; Lacey, 1997) (Figura 6). Kuno et al. (1981) indican que el 98% de las esporas son ovales, con el raquis largo (25 μm) con células conidióforas alargadas, solitarias de base subglobose o cilíndrica de 3 a 18 μm de largo por 1.5 a 4 μm de ancho (Brady, 1979b). Según Mc Leod (1954), el aspecto de la colonia es aterciopelado o pulverulent, inicialmente presenta un color blanquecino pero a medida que la colonia envejece se torna de color amarillo pálido.

Este hongo es agente causal de la muscardina blanca en muchos insectos (Ferron, 1978; Brady, 1979b; Lacey, 1997).

2.8.3. Distribución en el Perú.

En el Perú, Torres et al. (1993), colectaron cepas de *Beauveria* provenientes de diferentes zonas. En la costa (0 a 800 m.s.n.m.) colectaron adultos del “gorgojo del camote” *Euscepes postfaciatus*, en la sierra alta (3000 a 4000 m.s.n.m.) colectaron adultos del “gorgojo de los Andes” *Premnotrypes* spp y en la selva alta (0 a 800 m.s.n.m.) colectaron adultos de *Diabrotica* sp, todos infectados con *Beauveria* spp. Los mismos
autores identificaron las cepas y demostraron que todas las que provenían de la sierra alta de Perú pertenecían a *B. brongniartii*, mientras que las que provenían de la Costa y Selva alta pertenecían a la especie *B. bassiana*.

2.9. Caracterización morfológica, fisiológica y molecular del género *Beauveria*.

La forma y tamaño de las conidias -esféricas para *Beauveria bassiana* y elipsoidales para *Beauveria brongniartii-* así como las características de las células conidiógenas, es el criterio morfológico más utilizado para la clasificación de ambas especies. Sin embargo, debido a la variabilidad entre las cepas de *Beauveria* y a la especificidad que muestran hacia diferentes órdenes de insectos, se recurren a técnicas complementarias para su identificación. Actualmente se aplican técnicas moleculares tales como los estudios de isoenzimas, secuenciamento de RNA (RNA ribosomal), análisis de RFLP (Polimorfismo en la longitud de los fragmentos de restricción), análisis de AFLP (Polimorfismo en la longitud de fragmentos amplificados), análisis de RAPD (Polimorfismo de ADN amplificado arbitrariamente) con el fin de agrupar e identificar a las especies de *Beauveria*.

En el presente trabajo, se aplicó la técnica RAPD (Random Amplified Polymorphic DNA o ADN polimórfico amplificado al azar) la cual es una variación del protocolo de PCR con dos características distintivas: la primera es que utiliza un iniciador único en vez de un par de iniciadores (“primers”) y la segunda característica es que el único iniciador tiene una secuencia arbitraria y por lo tanto la secuencia del segmento que se amplifica es desconocida (Weising *et al.*, 1995; Ferreira y Grattapaglia, 1998).

2.10. Antecedentes de la caracterización morfológica, fisiológica, molecular y de la actividad entomopatógena de los hongos entomopatógenos.

Varela y Morales (1996) caracterizaron 6 cepas de *Beauveria bassiana* (8505, 8906, 8911, 8905, 8904, 9006) sobre *Hypothenemus hampei* (Coleoptera: Scolytidae) para lo cual evaluaron las variaciones morfológicas (macroscópicas y microscópicas), fisiológicas (viabilidad de la colonia, esporulación, tasa de crecimiento de la colonia, germinación, virulencia) y bioquímicas (producción de lipasa, isoenzimas), tratando de establecer una correlación de las variables estudiadas con la virulencia de las cepas. Encontraron que las características macroscópicas mostraron amplia variación por lo que no pudieron ser consideradas como único criterio para la caracterización. Se obtuvieron 6 perfiles electroforéticos diferentes para cada cepa analizada sin embargo, las cepas 8505, 8904 y
9006 provenientes del mismo orden de insecto (Coleoptera) presentaron bandas en común, deduciéndose que las cepas provenientes del mismo hospedero estaban más relacionadas que aquellas que provenían de orígenes geográficos diferentes. La cepa 8906 presentó el porcentaje de mortalidad más alto (75%) y un TL50 de 6,25 días. Las cepas derivadas de coleópteros (8911, 8904, y 9006) mostraron menor virulencia contra *H. hampeii*. Con estos resultados no pudieron demostrar una correlación entre las características evaluadas y la virulencia.

Driver y Milner (1998) realizaron una serie de revisiones acerca del uso del PCR para estudios de taxonomía del género *Beauveria*, concluyendo que existe una considerable diversidad genética en las dos principales especies: *Beauveria bassiana* y *Beauveria brongniartii*. Las técnicas moleculares actuales como el RAPD y RFLP permiten establecer diferencias entre cepas. También concluyeron que las características morfológicas no son lo suficientemente confiables para establecer diferencias entre *B. bassiana* y *B. brongniartii*.

Platii et al. (1998) caracterizaron 58 cepas de *Beauveria brongniartii* aisladas de *Melolontha melolontha* (Coleoptera: Scarabaeidae) procedentes de Valle d’Aosta-Italia, utilizando la técnica RAPD-PCR. Basándose en las bandas variables halladas elaboraron un dendograma conformado por 5 grupos, los cuales contenían cepas patogénicas y no patogénicas demostrando que no había correlación entre la patogenicidad y las agrupaciones realizadas por la técnica RAPD-PCR. Asimismo, encontraron que las cepas conformaban 2 grupos, es decir, había una relación de los grupos con la distribución geográfica. Concluyeron que el Valle d’Aosta posee una población heterogénea de *B. brongniartii* conformado por dos posibles grupos de cepas según su origen geográfico.

Luz et al. (1998) caracterizaron 10 cepas de *Beauveria bassiana*: CG14 (Hemiptera), CG16 (Lepidoptera), CG19 (Hemiptera), CG21 (Hemiptera), CG24 (Hemiptera), CG136 (Hemiptera), CG261 (Hemiptera), CG306 (Hemiptera), CG474 (Hemiptera) y CG516 (Hemiptera), las que previamente se evaluó su efecto sobre ninfas de tercer estádio de *Triatoma infestans* (Hemiptera: Reduviidae). El resultado del RAPD evidenció alta similitud entre las cepas a pesar de las diferencias en virulencia contra *T. infestans*. Las cepas más virulentas fueron más homogéneas y no pudieron ser diferenciadas mediante marcadores moleculares. Concluyeron que la alta similitud en las bandas podría estar relacionada con que las cepas provenían del mismo grupo de insectos hemípteros, por lo que no se pudo relacionar las bandas con la patogenicidad.

Glare e Inwood (1998) compararon diversas cepas de *Beauveria* spp. provenientes de Nueva Zelanda con cepas de otros países utilizando criterios morfológicos (medición de conidias) y moleculares. Basándose en las dimensiones de la conidia clasificaron a las cepas en dos grupos. Las cepas con conidias mayores de 3 mm de diámetro fueron clasificadas como *B. brongniartii* mientras que las cepas con conidias esféricas y menor de 3 mm de diámetro fueron *B. bassiana*. Realizaron un análisis de RAPD utilizando 10 iniciadores al azar obteniéndose 330 bandas, que permitieron clasificar las cepas en 4 grandes grupos: un grupo heterogéneo *B. bassiana*/*B. brongniartii* procedentes de Nueva Zelanda y otros lugares, un segundo grupo conteniendo solo cepas de *B. bassiana* procedentes de Nueva Zelanda, un tercer grupo conteniendo solo cepas de *B. brongniartii* procedentes de Nueva Zelanda y otros países y un cuarto grupo conformado por otras...
especies de *Beauveria* (*B. velata*, *B. caledonica*, *B. amorphia* y *B. verminonia*). La digestión enzimática del DNA ribosomal respaldó la existencia de una diferencia genómica entre las cepas de *B. bassiana* de Nueva Zelanda separándolos del grupo heterogéneo *B. bassiana*/*B. brongniartii*.

Vélez *et al.* (2000) caracterizaron 17 cepas multiespórlicas de *B. bassiana* según variables fisiológicas (patogenicidad a la broca del café, producción de esporas, germinación, tasa de crecimiento diario de las colonias y tamaño de esporas) y variables moleculares a través de la técnica RAPD mediante el uso de iniciadores universales. El dendograma obtenido basándose en el análisis de variables moleculares permitió la clasificación en dos grandes grupos mientras que los resultados de las pruebas fisiológicas permitieron la clasificación de 4 grupos. Posteriormente al comparar el dendograma de variables moleculares con variables fisiológicas la única variable que mostró diferencias significativas fue la producción de esporas. Estos resultados sugirieron que deberían seleccionarse entre los grupos de cepas clasificadas -por el criterio molecular- aquellas que en forma individual presenten altos porcentajes de patogenicidad, germinación, producción de esporas, tasa diaria de crecimiento entre otros.

Valderrama *et al.* (2000) utilizaron la técnica de amplificación aleatoria de ADN polimórfico para analizar la variabilidad genética de 10 cepas de *Beauveria bassiana* (Bals. Vuillemin) procedentes de diversos insectos, localidades y con diferentes porcentajes de patogenicidad sobre la broca del café, *Hypothenemus hampei* (Coleoptera: Scolytidae). En el análisis de RAPD incluyeron una cepa de *Beauveria brongniartii* y otra de *Paecilomyces lilacinus*. Obtuvieron dos grupos principales de cepas, en uno de ellos se agrupaba el 90% de las cepas de *B. bassiana* y pudo distinguirse una asociación de acuerdo con su origen geográfico. En contraste no encontraron una clara agrupación de las cepas con respecto a su hospedero debido probablemente a que el hongo tiene bajo grado de especialización hacia un hospedero en particular. De la misma forma, tampoco hubo agrupación de acuerdo a la patogenicidad contra la broca, debido a que la virulencia y la patogenicidad son características gobernadas por muchos genes, lo que hace difícil encontrar marcadores ligados. La cepa de *B. brongniartii* se agrupó con las cepas de *B. bassiana* posiblemente porque esta cepa está más relacionada con esta última. Un segundo grupo fue conformado por una cepa de *B. bassiana*, que presentó patrones genéticos diferentes a las cepas anteriores. La cepa de *P. lilacinus* se separó completamente en un tercer grupo.

Avis *et al.* (2001) indicaron que una cepa debe ser identificada no solo mediante su morfología, sino también evaluando su actividad enzimática, asimilación de nutrientes, y actividad patogénica. Posteriormente sugieren que se deben realizar pruebas con otras cepas para determinar la diversidad entre las especies comparado su efectividad, de esta manera se selecciona la cepa más eficiente para el biocontrol *in vivo*.

Zúñiga y Redolfi (1981) inocularon *Beauveria bassiana* (un tratamiento en solución y otro tratamiento con espolvoreo) sobre huevos y larvas de tercer estadio de *Spodoptera frugiperda* (Lepidoptera: Noctuidae). Observaron que la acción del hongo sobre los huevos próximos a eclosionar generalmente se manifiesta en larvas de primer estadio con un porcentaje de infección de 71.5% para el tratamiento con la solución del hongo y...
77.44% para el tratamiento con espolvoreo. En el caso de las larvas de tercer estadio, el porcentaje de infección para el primer tratamiento fue de 33.33% y para el segundo tratamiento fue de 78.88%, presentándose en el testigo y en los tratamientos muerte por bacteriosis pero sin diferencias significativas. La muerte por bacteriosis se debe a que estas larvas provenían de una crianza masal siendo imposible evitar la contaminación. También inocularon pupas con el hongo, muriendo algunas de ellas. Concluyeron que todos los estados de desarrollo son susceptibles al ataque por los hongos.

Maniaia y Fargues (1985) determinaron la susceptibilidad de Spodoptera frugiperda (Lepidoptera: Noctuidae) a 6 cepas de Nomuraea rileyi y 10 cepas de Paecilomyces fumosoroseus. Las cepas de P. fumosoroseus presentaron un TL50 entre 2 a 3.7 días y un porcentaje de mortalidad mayor al 50% mientras que las cepas de N. rileyi presentaron un TL50 entre 5 y 10 días y un porcentaje de mortalidad menor al 25%. Encontraron que las larvas de S. frugiperda fueron más susceptibles a P. fumosoroseus, concluyendo que este hongo presenta un potencial para el control de este insecto.

Feng y Johnson (1990) evaluaron la virulencia, tasa de crecimiento y esporulación de 6 cepas de Beauveria bassiana provenientes de homópteros y coleópteros en Diuraphis noxia (Homoptera: Aphididae) (las cepas SGBB8601, BB286, BB344, BB1554, BB717, BB806). Hallaron que todos las cepas infectaron D. noxia, presentándose amplias variaciones en su virulencia. Las CL50 variaron de 0.57×10^{-7} a 91.54 x 10^{5} conidias/ml. La cepa SGBB8601 aislada de áfido (Diuraphis noxia) presentó la CL50 más baja (0.57×10^{5} conidias/ml) y fue la más virulenta, mientras que las otras cepas derivadas de homópteros (excepto la cepa BB1554) fueron las menos virulentas. Las cepas procedentes de coleópteros (BB286 y BB344) causaron virulencia similar a la causada por la cepa SGBB8601. Esto sugeriría que ni el hospedero de origen ni la relación filogenética entre hospederos potenciales es un indicador confiable de la probable virulencia de un hongo. En cuanto a la tasa de crecimiento y de esporulación, la cepa SGBB8601 fue la más virulenta y tuvo una tasa de crecimiento y de esporulación de 23.5 mm y 78.12 conidias/ml respectivamente mientras que la cepa BB717 (aislada de homóptero) fue la menos virulenta y presentó un crecimiento rápido de colonia y una tasa intermedia de producción de conidias, sugiriendo que no hay relación entre la virulencia, tasa de crecimiento y esporulación.

Jiménez (1992) evaluó la patogenicidad de 46 cepas de Beauveria bassiana provenientes de 13 países sobre adultos hembras de broca del café Hypothenemus hampei, encontrando que 16 cepas de B. bassiana mataron en menos de 120 horas al 50% de los insectos tratados y 5 de ellas lo hicieron en cerca de 80 horas. Un bioensayo posterior para determinar la CL50 no permitió encontrar diferencias de patogenicidad entre las 5 mejores cepas, por lo que evaluaron el número de cadáveres con esporulación, encontrando que el porcentaje de micosis fue alrededor de 65%.

Gonzáles et al. (1993) compararon una cepa de Beauveria bassiana, proveniente directamente de Diatraea saccharalis (Bb-9205DS) (Lepidoptera: Pyralidae), frente a la misma cepa reactivada en broca del café (Bb-9205BFC), encontrando que el promedio de mortalidad causado por Bb-9205DS fue de 88,88% y por Bb-9205BFC fue 100%. La diferencia entre las cepas fue atribuida a que el patógeno adquirió mecanismos de agresividad al pasar por el huésped susceptible. El tiempo letal medio fue de 92.4 horas.
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmatschischema tangeria (Gyen).

para Bb-9205DS y de 54,72 horas para Bb-9205 BFC. La disminución en el tiempo de mortalidad de las brocas tratadas con Bb-9205 BFC puede también ser debida a la reactivación de la cepa al pasarla por el huésped susceptible. La mortalidad diaria para la cepa Bb-9205 DS se inició después de 12 horas mientras que para la cepa Bb-9205 BFC se inició antes de las 12 horas. La disminución en el tiempo de mortalidad diaria y en el TL50 indican una mayor agresividad del hongo hacia el huésped susceptible, es decir, qué la reactivación del hongo en el hospedero susceptible influye en una mayor virulencia.

Fuentes y Carballo (1995) evaluaron la patogénicidad de 10 cepas de Beauveria bassiana sobre Plutella xylostella (Lepidoptera: Plutellidae) utilizando una concentración de 10^9 conidias/ml encontrando que ocho cepas causaron la mayor mortalidad y el menor TL50, sin presentar diferencias significativas entre ellas. En un segundo ensayo determinaron la CL50 (2.2 x 10^5 conidias/ml) y CL95 (5.1 x 10^7 conidias/ml) de la cepa 447. Posteriormente al evaluar las 4 mejores cepas del primer ensayo frente a la cepa 447, usando la CL95 de esta última, encontraron que cada cepa respondía de manera diferente pudiéndose diferenciar entre ellas, siendo la cepa 447 la que presentó el menor TL50 (3.32 días) y el porcentaje de mortalidad más alto. Finalmente al evaluar la cepa 447 en invernadero, con 10 veces menos la CL50 (5.1 x 10^6 conidias/ml), la CL95 (5.1 x 10^7 conidias/ml) y 10 veces más la CL95 (5.1 x 10^8 conidias/ml) encontraron que las dos últimas concentraciones causaron alta mortalidad (89.17% y 96.67%), demostrando que no era necesario incrementar la dosis para obtener un porcentaje de mortalidad similar al obtenido en el laboratorio. Concluyeron que las concentraciones menores a 10^7 conidias/ml son adecuadas para la diferenciación entre cepas.

García y Carballo (1995) evaluaron la virulencia de cuatro cepas de Beauveria bassiana (RL-9, 447, 167 y Coyol-1) y cuatro cepas de Metarhizium anisopliae (M-32, M-37, MTB y M-30) para el control de Hyalynenus tarsatus (Hemiptera: Alydidae) usando una concentración de 10^6 conidias/ml. Determinaron que las cepas M-37, M-32, M-30 y RL-9 y 447 causaron el 100% de mortalidad y un TL50 de cerca de 2 días para M. anisopliae y cerca de 5 días para B. bassiana. En un segundo ensayo evaluaron las cepas RL-9 y M37, determinando que la CL50 y CL95 para la cepa M-37 fue 1.71×10^8 y $5.5x \times 10^8$ conidias/ml y para la cepa RL-9 fue 1.18×10^8 y 2.69×10^8 conidias/ml respectivamente. En un tercer ensayo evaluaron todas las cepas utilizando la CL95 hallada en el segundo ensayo sin encontrar diferencias en la mortalidad y en los TL50 de las cepas de M. anisopliae y B. bassiana, lo que les permitió concluir que la concentración 10^8 conidias/ml permitió diferenciar a las cepas por su virulencia.

González et al. (1996) evaluaron 5 cepas de Beauveria bassiana (Achi-1, Achi-5, A4, 447 y 167) y su potencial para el control de larvas del tercer estadio de Ecdytolophy torticornis (Lepidoptera:Tortricidae), encontrando que no todas las cepas fueron eficientes a pesar de haber utilizado una concentración alta (10^9 conidias/ml) y que el TL50 permitió separar a las cepas por su virulencia siendo la cepa 447 la más virulenta (1.78 días). Eligieron la cepa 447 para un segundo ensayo determinando que su CL50 fue de 2.44×10^8 conidias/ml. En un tercer ensayo evaluaron la producción de conidias por larva muerta siendo la cepa 447 la que presentó un mayor potencial de inóculo (0.6×10^8 conidias/ml).
conídas/ml). Concluyeron que la cepa 447 fue la más promisoria para el control de larvas de *E. torticornis*, porque presentó el porcentaje más alto de mortalidad acumulada a los 10 días después de efectuada la inoculación, un TL$_{50}$ menor y mayor producción de conídas con respecto a las demás cepas.

Hafez *et al.* (1997) evaluaron el efecto de 7 concentraciones de *Beauveria bassiana* sobre los diferentes estados de desarrollo de *Phthorimaea operculella*, determinando que la CL$_{50}$ para las larvas era de 4.7 x 106 conídas/ml, el periodo pupal se incrementó hasta en 15 días, el porcentaje de emergencia de los adultos decreció hasta 0% y el número de huevos depositados disminuyó hasta en 103.3 - 15.8 huevos, concluyendo que este hongo afecta los estados de larva, pupa y adulto.

Huamani (1997) evaluó la patogenicidad de una cepa nativa del hongo *Beauveria bassiana* sobre los estados de huevo, larva y pupa del “cogollero del maíz” *Spodoptera frugiperda* (Lepidoptera: Noctuidae). Utilizando tres concentraciones (107, 108 y 109 conídas/ml) determinó que el primer estado fue el más susceptible (96.67%) y el quinto estado el menos susceptible (13.33%). El porcentaje de mortalidad para el estado huevo varió de 5.56% a 34.33% y para las larvas eclosionadas la variación fue de 5.56% a 32.22%, siendo el efecto total de 11.12% a 66.55%. Concluyó que todos los estados de desarrollo de *S. frugiperda* son susceptibles a *B. bassiana*.

Vandenberg *et al.* (1998) evaluaron 2 cepas de *Beauveria bassiana* en *Plutella xylostella* (Lepidoptera: Plutellidae), una proveniente de larvas de *P. xylostella* y la otra un producto comercial. Las CL$_{50}$ determinadas para ambas cepas fueron similares. El tercer y cuarto estadio fueron los más susceptibles a diferencia del primer y segundo estadio. Las larvas inoculadas en el primer y segundo estadio tuvieron un tiempo de sobrevivencia menor a las larvas de tercer y cuarto estadio inoculadas. Estos resultados les permitió conocer la susceptibilidad de *P. xylostella* a *B. bassiana*, además del potencial que presentaba la preparación comercial de *B. bassiana* sobre *P. xylostella* en el campo.

Wraight *et al.* (1998) mediante la determinación de la CL$_{50}$ evaluaron la patogenicidad de 14 cepas de *Beauveria bassiana* sobre ninfa de tercer estadio de *Bemisia argentifolii* (Homoptera: Aleyrodidae). Solo 4 cepas presentaron la CL$_{50}$ más baja, dos de las cuales no fueron aisladas de *B. argentifolii* ni fueron reactivadas en ella y solo una de las cepas causó una pronunciada pigmentación roja. Demostraron que las cepas de *B. bassiana* de diversos orígenes son igualmente patógenicas a las ninfas de *B. argentifolii*.

Ramos *et al.* (2000) evaluaron la susceptibilidad de huevos y ninfas de primer instar de *Bemisia tabaci* (Homoptera: Aleyrodidae) al hongo *Beauveria bassiana* (cep PL63 y Conidia®). Utilizaron una concentración de 108 conídas/ml de cada producto asperjado en hojas. Las aspersiones de entomopatógenos sobre los huevos retardaron la eclosión pero no la impidieron. Con relación a las ninfas, las cepas PL63 y Conidia® produjeron 78,2% y 89,5% de mortalidad y 62.3% y 71.5% de micosis respectivamente, concluyendo que las ninfas de *B. tabaci* son susceptibles a *B. bassiana* mientras que los huevos son menos susceptibles a la infección.

Gindin *et al.* (2000) evaluaron la patogenicidad de 35 cepas de *Verticillium lecanii* provenientes de diferentes hospederos y distintos orígenes geográficos sobre los estados
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmetrisma tangolias (Gyen).

de desarrollo de *Bemisia argentinolii* (Homoptera: Aleyrodidae). Varias cepas que mostraron alta patogenicidad a estas ninñas fueron también evaluadas sobre huevos, pupas y adultos. Como resultado se obtuvo que los huevos fueron inmunes a la infección, pero la mortalidad de las ninñas emergidas fue de 95% a 98%. La patogenicidad de las cepas de *V. lecanii* sobre pupas varió ente 59±12.1% a 72.5±13.1% y la mortalidad sobre adultos estuvo entre 34.1±5.1% y 52.6±3.8%. Las cepas más virulentas provenían de áfidos y presentaban el mismo origen geográfico. La susceptibilidad de los diferentes estados de desarrollo estaría influenciada por la habilidad del patógeno de iniciar la infección y por su especificidad, concluyendo que todos los estados de desarrollo fueron susceptibles excepto el estado de huevo.

Aponte y Uribe (2001) evaluaron 18 cepas de *Beauveria bassiana* provenientes de lepidópteros, coleópteros, dermápteros, himenópteros y homópteros frente a *Spodoptera frugiperda* (Lepidoptera: Noctuidae) encontrando que las cepas presentaron un amplio rango de mortalidad (0% a 93,3%). Realizaron un segundo estudio, en el cual determinaron la CL50 de las 6 mejores cepas. Las cepas IBUN.B-59 (Coleoptera), IBUN.B-76 (Homoptera) y IBUN.B-146 (Coleoptera) presentaron los valores más bajos con un rango de 9.5 x 10^6 a 1 x 10^8 conidias/ml. Las cepas IBUN.B-16, IBUN.M-48 y IBUN.B-79 presentaron valores de CL50 en rangos similares pero con límites de confianza muy amplios (9.8 x 10^5 - 8.9 x 10^10 conidias/ml) sugiriendo inestabilidad de estas cepas en cuanto a su actividad bioplaguicida. Estos resultados les permitió sugerir que la actividad de *B. bassiana* contra *S. frugiperda* depende de las características intrínsecas de cada cepa, tales como el origen geográfico, hospedero de origen, esporulación, capacidad y tiempo de germinación, actividad enzimática, viabilidad de las conidias entre otras. Las cepas que causaron mayor mortalidad procedían de diferentes órdenes, sugiriendo que fuentes con potencial biocapidador alto pueden encontrarse en órdenes de insectos diferentes al del insecto plaga.
CAPÍTULO III. MATERIALES Y MÉTODOS

El presente trabajo se llevó a cabo en los laboratorios e invernaderos del Departamento de Protección de Cultivos (Área de Entomología), pertenecientes al Centro Internacional de la Papa (CIP), La Molina, Lima-Perú.

3.1. Material biológico.

Se utilizaron tres cepas de Beauveria brongniartii: la cepa CIPCa18(85) aislada de larvas de último estadio de S. tangolias en Cajamarca, la cepa CIPCu1(44) aislada de adultos de Premnotrypes latithorax en Cuzco y la cepa CIPH1(1) aislada de larvas de P. suturicalus provenientes de Huancayo. Además, para las pruebas moleculares se utilizó una cepa de Beauveria bassiana CIPLM1 aislada de adultos de Euscepes postfasciatus en Lima (Tabla 1).

- Phthorimaea operculella y Symmetrischema tangolias en sus estados de huevo, larva y pupa.
- Larvas de Premnotrypes spp.
- Tubérculos de papa var “Tomasa Tito Condemayta”. El día anterior al ensayo los
tubérculos fueron cortados en rodajas (1 cm de espesor), sumergiéndolas en agua durante 30 minutos. Luego las rodajas fueron colocadas en bandejas de plástico acondicionadas con papel toalla, dejándolas secar en un ambiente fresco.

3.2. Reactivación del patógeno.

Cada una de las tres cepas de *B. brongniartii* fueron reactivadas en sus hospederos originales (Tabla 1). Para este propósito se utilizaron larvas del “gorgojo de los Andes” (*Premnotypes latitiorax* o *P. suturalis*) y de “polilla de la papa” (larvas de último estadio de *S. tangolias*), las cuales fueron desinfectadas con hipoclorito de sodio al 3% durante un minuto enjuagándolas luego en agua destilada. Posteriormente las larvas fueron sumergidas en la solución conidial correspondiente a su patógeno durante cinco minutos. Los insectos tratados fueron colocados individualmente en placas Petri acondicionadas con un papel filtro (Whatman N° 2) en su base humedecido con aproximadamente 0.5 ml de agua destilada estéril y mantenidas a 22°C por 10 días. Al desarrollarse la micosis, el micelio fue sembrado en agar papa dextrosa (APD).

3.3. Mantenimiento de las cepas y obtención del inóculo.

La siembra del hongo se llevó a cabo en una cámara de flujo laminar. Con una aguja de siembra en ángulo recto se tomó una porción de micelio joven del cultivo reactivado, sembrándose por punción en cinco sectores del medio APD contenido en placas Petri, las que luego fueron selladas con parafilm y mantenidas a 22°C durante 15 días (Figura 7).

De las tres cepas de *B. brongniartii* se obtuvieron los iglúcios tomando como punto de partida una solución inicial con una concentración de 10^9 conidias/ml para cada cepa, para ello se agregó 10 ml de agua destilada y 2 gotas de Tween 80 a cada placa Petri, lavándose cada colonia con la ayuda de un hisopo estéril (Figura 7).

Para determinar su concentración se tomó 1 ml de la solución madre obtenida de cada cepa y se realizaron diluciones seriadas con un factor de dilución 0.1 realizándose el recuento en una cámara de Neubauer utilizando un microscopio compuesto con un objetivo de 40x de aumento. Para determinar la concentración de la solución se siguió el método descrito por French y Herbert (1982).

3.4. Establecimiento del módulo de crianza.
Con la finalidad de contar permanentemente con los diferentes estados de desarrollo de *P. operculella* y *S. tangolias* se mantuvo un módulo de crianza de cada una de los insectos para lo cual se siguió la metodología de crianza utilizada en el CIP.

3.4.1. Crianza de Phthorimaea operculella.

Para la obtención de huevos se utilizaron vasos de plástico (500 ml) y en cada uno de ellos se colocaron aproximadamente 100 pupas, este recipiente se cubrió con tela de organza, la cual se sujetó con una banda elástica. Posteriormente se colocó un disco de papel filtro y sobre el disco se ubicaron dos placas Petri para asegurar una mayor adherencia de huevos. El disco se cambió diariamente durante cinco días con el fin de obtener huevos de la misma edad. Los adultos fueron alimentados diariamente con una solución de azúcar y agua (1:10), la cual fue depositada sobre la tela organza utilizando un gotero.

Para la crianza de las larvas se utilizaron recipientes de plástico (30cm x 20cm x 9cm). En el fondo de cada uno se colocó arena esterilizada hasta una altura de 1cm depositándose los tubérculos de papa var “Tomasa Tito Condemayta” los cuales fueron infestados con larvas neonatas. Luego los recipientes se taparon y se mantuvieron a 25°C. Luego de 15 días se obtienen las pupas que fueron tamizadas con el fin de separarlas de la arena. Luego fueron lavadas con una solución de hipoclorito de sodio al 3% durante tres minutos con el fin de disolver el cocon y liberar las pupas, que posteriormente fueron colocadas en una bandeja con papel toalla para eliminar el exceso de agua y dejarlas secar. Finalmente las pupas son colocadas en vasos y mantenidas en refrigeración a 10°C hasta su utilización en las diferentes pruebas (Figura 8).

Las larvas de cuarto estadío utilizadas en algunas pruebas fueron obtenidas antes de la formación de la pupa, es decir a los 12 días después de realizada la infestación en los tubérculos de papa.

3.4.2. Crianza de Symmetrischema tangolias.

Para esta especie se siguió una metodología similar a la descrita anteriormente, utilizándose papel toalla en lugar de arena. Los recipientes fueron mantenidos a 18°C. A los 20 días las larvas llegan al quinto estadío y salen del tubérculo, por lo que es necesario colocar cartuchos de papel para permitir que las larvas encuentren un lugar donde empapar. Aproximadamente a los 25 días las pupas se colectaron de los cartuchos colocándolas en vasos para refrigerarlas a 10°C hasta su utilización en las diferentes pruebas (Figura 9).

3.5. Caracterización morfológica, fisiológica y molecular de las cepas de *B. brongniartii*.

"Programa Cybertesis PERÚ - Derechos son del Autor"
Las evaluaciones se llevaron a cabo de acuerdo al flujograma de trabajo (Figura 10).

3.5.1. Caracterización morfológica de las cepas de *B. brongniartii*.

El primer paso fue establecer la identidad del hongo mediante la utilización de la clave taxonómica propuesta por Brady (1979a,b). Adicionalmente se realizaron observaciones del aspecto y color de la colonia, pigmento en el medio de cultivo, formación de sinemas y tamaño de las conidias.

3.5.1.1. Morfología macroscópica.

Se realizaron observaciones en el aspecto, color, crecimiento y superficie del hongo cultivado en medio APD. Con una aguja de siembra en ángulo recto las tres cepas de *B. brongniartii* fueron sembradas por punción en el centro de una placa Petri conteniendo medio APD, incubándose a 22°C durante 15 días. Se realizaron observaciones en el color de las colonias, aspecto, superficie y crecimiento. Además también se observó si el hongo produce pigmentación en el medio.

3.5.1.2. Morfología microscópica.

La morfología microscópica consistió en determinar el tamaño de las conidias. Con la ayuda de una pipeta se tomó una alicuota de solución conidial (10^5 conidias/ml) para cada una de las tres cepas de *B. brongniartii*. Las alicuotas se colocaron luego en láminas portaobjetos cubiertas con un cubreobjetos a la que se le agregó una gota de aceite de inmersión. Con un micrómetro adaptado al ocular del microscopio y utilizando un objetivo 100x se midió el diámetro mayor y menor de cada conidia. Se midieron un total de 50 conidias por cada cepa de *B. brongniartii*.

También se describió la forma de las células conidióforas. Para ello se realizó un microcultivo en placa Petri cortando pequeños cubos de medio APD, cada cubo fue colocado en laminas portaobjetos estériles ubicadas en placas Petri. Con una aguja de siembra en ángulo recto se sembró una pequeña porción de micelio en cada lado del cubo de agar. Posteriormente se colocó un cubreobjetos sobre el cubo de agar y se selló la placa Petri con parafilm. Las placas fueron mantenidas a 22°C. Al quinto día se retiró el parafilm y el cubreobjetos fue colocado en otra lamina portaobjetos con una gota de azul de lactofenol. Se eliminó el cubo de agar y se colocó una gota de azul de lactofenol en la lamina portaobjetos cubriéndola con un nuevo cubreobjetos. Finalmente, se eliminó el exceso de colorante con un papel absorbente, sellándose cada cubreobjetos con esmalte de uñas. Cada montaje realizado fue observado con un microscopio a 1000x con aceite de inmersión.

3.5.2. Caracterización fisiológica de las cepas de *B. brongniartii*.

La caracterización fisiológica se realizó mediante la evaluación de los parámetros utilizados en el control de calidad de formulaciones de hongos entomopatógenos: porcentaje de germinación, producción de conidias y crecimiento radial.
3.5.2.1. Porcentaje de germinación (viabilidad).

Para obtener el porcentaje de germinación se repartieron 6 alícuotas de la solución conidial (10^6 conidias/ml) de 5 μl cada uno en placas Petri conteniendo medio APD (cada alícuota representa una repetición para cada cepa de B. brongniartii). Las placas fueron mantenidas a 22°C durante 24 horas. Luego se agregó azul de lactofenol para detener la germinación y dar contraste a las conidias. Cada sector de agar que contenía una alícuota fue cortado y colocado en un portaobjeto y posteriormente cubiertas con un cubreobjetos. El porcentaje de germinación se determinó mediante la fórmula siguiente:

\[
\text{Porcentaje de germinación} = \left(\frac{\text{Nº de conidias germinadas}}{\text{Nº total de conidias}} \right) \times 100
\]

Se consideró como conidia germinada aquella cuyo tubo germinativo presente el doble del diámetro mayor de la conidia.

3.5.2.2. Producción de conidias (esporulación).

Se inoculó 10 μl de la solución conidial con una concentración de 10^6 conidias/ml en placas Petri con APD diseminándose en toda la superficie del medio con la ayuda de una espátula de Drigalsky esterilizada. Las placas fueron mantenidas a 22°C durante 15 días. Para el recuento de conidias se preparó una solución conidial con 10 ml de agua destilada y Tween 80 al 1%, y a partir de esta se realizaron diluciones sucesivas en un factor de 0.1. Con una cámara de Neubauer se realizaron los conteos de conidias por mililitro, se utilizaron cuatro repeticiones para cada cepa. Se realizó un análisis de varianza (ANOVA) a los datos obtenidos comparándose los promedios mediante el análisis DLS (diferencia límite de significación) ($P<0.05$) utilizando el paquete estadístico SAS versión 8.2.

3.5.2.3. Crecimiento radial (tasa de crecimiento).

La evaluación del crecimiento radial se efectuó de acuerdo a los metodología seguida por Varela y Morales (1996) y Vélez et al. (2000). En el centro de la placa conteniendo medio APD se colocó 10 μl de solución conidial con una concentración de 10^7 conidias/ml, a partir del segundo día de sembrado se midió el radio mayor y el radio menor partiendo del centro de cada colonia. Se utilizaron diez repeticiones para cada cepa y las mediciones se realizaron diariamente durante 15 días. Con el radio mayor y el radio menor se determinó el radio promedio en cada día para cada cepa y a partir de este dato se realizó un análisis de regresión para cada una de las cepas, determinándose la tasa de crecimiento diario.

3.5.3. Caracterización molecular de las cepas de B. brongniartii mediante la técnica RAPD.
3.5.3.1. Obtención del micelio.

La cepa de *B. bassiana* y las tres cepas de *B. brongniartii* fueron sembradas en caldo papa dextrosa, manteniéndose en agitación orbital (300 RPM) a 20°C durante 5 días. El micelio se recuperó por filtración al vacío utilizando papel Whatman No 2, lavándolo dos veces en agua ultrafiltrada estéril.

3.5.3.2. Extracción del DNA.

La extracción de DNA se realizó de acuerdo al método de Aljanabi y Martínez (1997). En tubos eppendorf se colocó 0.05-0.1 g de micelio el cual fue homogenizado en 400 µl de buffer de extracción (ver anexo) durante 10 a 15 segundos con la ayuda de un homogenizador de tejidos. Luego se agregó 40 µl de Sodio Dodecil Sulfato (SDS) 20% y 8 µl de proteinasa K 20 mg/ml. Las muestras fueron incubadas a 55-65°C durante 1 hora o toda la noche, luego del cual se agregó 300 µl de NaCl 6M (NaCl saturado en agua) a cada tubo. Las muestras se mezclaron con la ayuda de un vortex durante 30 segundos a máxima velocidad para posteriormente centrífugar por 30 minutos a 10000g. El sobrenadante fue transferido a otro eppendorf en el cual se agregó un volumen igual de isopropanol, mezclando suavemente para luego colocar las muestras a -20°C durante 1 hora. Posteriormente las muestras fueron centrifugadas durante 20 minutos a 10000g. Finalmente el precipitado fue lavado con etanol 70%, secado y resuspendido en 100 µl de agua estéril libre de nucelas.

Las extracciones fueron almacenadas a -20°C hasta su uso. Para mejorar la calidad de DNA se agregó 2.5 µl de RNAsa (10 µg/µl). La calidad del DNA se analizó por medio de electroforesis en gel de agarosa al 1%, coloreándose con bromuro de etidio y observándose con luz ultravioleta. En todas las separaciones por electroforesis se utilizó 2 µl del marcador λPST-I.

3.5.3.3. Aplicación del la técnica RAPD.

Se utilizó la técnica de amplificación aleatoria de ADN polimórfico (RAPD) para analizar la variabilidad genética entre las tres cepas de *Beauveria brongniartii* procedentes de diferentes insectos y diferentes localidades. Se utilizó 5 µl de DNA con una concentración de 5 ng/µl. Para ello se utilizaron 10 iniciadores universales OPM 1, OPM 3, OPM 4, OPM 5, OPM 6, OPM 9, OPM 10, OPM 12, OPM 17 y OPM 19 (Operon Technologies).

Las reacciones se realizaron en un volumen total de 15 µl, conteniendo 4.76 µl H₂O ultrafiltrada, 1.50 µl de buffer PCR 10X, 0.45 µl MgCl₂ 50 mM, 1.20 µl dNTPs 2.5 mM, 2.0 µl del iniciador (10 ng/µl) y 0.09 µl de Taq polimerasa. Como control se utilizó la cepa de *Beauveria bassiana* CIPLM1. La amplificación se realizó con un termociclador MJ-Research PTC-100 con el siguiente programa: 94°C por 3 minutos, 94°C por un minuto, 35°C por un minuto, 37°C por 0.4 C/segundo, 72°C por 2 minutos, repetir 40 veces a partir del segundo paso, 72°C por 7 minutos y 10°C por “n” horas para finalizar.

Todas las amplificaciones se separaron por electroforesis en gel de agarosa al 1,4% utilizando 1X del buffer Tris-Borato-EDTA (TBE) a 80V. Los geles fueron teñidos con
bromuro de etidio y visualizados con luz UV. Todas las amplificaciones fueron repetidas mínimo cinco veces con el objetivo de ver la reproducibilidad en los patrones de bandas electroforéticas. Las comparaciones de cada perfil para cada iniciador se realizó en base a la presencia/ausencia (1/0) de las bandas elaborándose una matriz con el cual se calculó el coeficiente de similitud de Jaccard. Las agrupaciones para la elaboración del dendograma se realizaron utilizando el algoritmo UPGMA mediante el programa NTSYS versión 2.2.

3.6. Evaluación de la actividad entomopatógena de las cepas de *B. brongniartii* sobre *Phthorimaea operculella* y *Symmetrischema tangolias*.

Una vez que la identidad del hongo ha sido establecida se evaluó la patogenicidad de las cepas para seleccionar la más eficiente, mediante el porcentaje de mortalidad y la virulencia hallando el tiempo letal medio (TL$_{50}$) y la concentración letal media (CL$_{50}$). Generalmente este tipo de ensayos se realiza in vitro. Los bioensayos se organizaron de acuerdo al fluigograma adjunto (Figura 11).

3.6.1. Efecto de las cepas de *B. brongniartii* en larvas de primer estadio de *P. operculella* y *S. tangolias*.

En estos ensayos, las tres cepas de *B. brongniartii* fueron evaluadas en larvas de primer estadio de *P. operculella* y *S. tangolias*. La elección de este estado de desarrollo se debe a que el control debe estar dirigido al estado de desarrollo dañino para el cultivo con el fin de minimizar los daños ocasionados, tal como lo postuló Ignoffo et al. (1975) citados por Manania y Fargues (1985).

3.6.1.1. Patogenicidad.

Este ensayo tuvo como finalidad seleccionar la cepa que ocasiona el mayor porcentaje de mortalidad. Para este ensayo se evaluaron 2 tratamientos: una suspensión de *B. brongniartii* con 10^9 conidias/ml y un testigo, con 10 repeticiones de 10 larvas de primer estadio cada uno, para un total de 100 larvas. En un recipiente de plástico se colocó una población de larvas de primer estadío y se agregó 10 ml de la solución conidial, las larvas permanecieron en contacto con la solución por un minuto, bajo agitación suave. Posteriormente las larvas fueron pasadas a través de una malla fina, eliminándose el exceso de humedad colocando la malla sobre papel toalla.

Las larvas tratadas se colocaron individualmente sobre una rodaja de papa contenida en una placa Petri. Cada placa fue sellada con una cinta de parafilm para evitar que la larva escape de la placa. Al día siguiente, cuando la larva ingresó al tubérculo, se retiró el parafilm (Figura 12). La individualización de las larvas permitió realizar la evaluación de la
patogenicidad ocasionada por la acción directa del hongo sobre cada una de ellas y no como consecuencia de la oportunidad de enfermarse por la presencia permanente del inóculo, lo cual ocurre cuando se evalúa la patogenicidad sobre poblaciones en las que un insecto enfermo puede estar afectando la población y servir de vehículo para la infección del grupo (Gonzáles et al., 1993).

Las observaciones se realizaron con la ayuda de un estereoscopio, pinzas y pinceles. La evaluación se realizó al sexto día registrándose la mortalidad total. Las larvas muertas fueron colocadas en cámaras húmedas para facilitar el crecimiento de micelio, comprobándose así que el individuo estaba infectado. El diseño utilizado fue completo al azar, los datos de mortalidad y micosis fueron sometidos a un análisis de varianza (ANOVA). Para la comparación de medias se utilizó la prueba de DLS ($P<0.05$).

3.6.1.2. Virulencia y determinación de la CL_{50} y la CL_{90} de las cepas de *B. brongniartii*.

El objetivo de este ensayo fue determinar el TL_{50} para cada concentración de las tres cepas y determinar la dosis necesaria para matar el 50% y el 90% de la población larval (CL_{50} y CL_{90}). Se evaluaron seis concentraciones de la solución conidial (10^8, 10^7, 10^6, 10^5, 10^4 y 10^3 conidias/ml) y un testigo (sin tratamiento). La metodología utilizada fue similar a la usada en el ensayo anterior. Para cada tratamiento se utilizaron 60 larvas de primer estadío agrupadas en 6 repeticiones de 10 larvas. Las evaluaciones se realizaron diariamente durante siete días registrándose la mortalidad diaria. Las larvas muertas fueron colocadas en cámaras húmedas para observar el crecimiento de micelio y verificar que la muerte fue por el patógeno.

El diseño fue completo al azar. Se realizó un análisis de varianza a los porcentajes de mortalidad total y micosis, los cuales fueron transformados previamente a arcosen \sqrt{x}, los promedios se compararon mediante un análisis de Waller y Duncan ($P<0.05$). Con los datos de mortalidad diaria de cada concentración se determinó el TL_{50} y sus límites de confianza mediante el análisis de Probit (SAS Institute Inc, 1998). Los datos de mortalidad total acumulada de cada concentración fueron corregidos mediante la fórmula de Abbott, determinándose la CL_{50}, CL_{90} y sus límites de confianza respectivos mediante el análisis de Probit, utilizando el paquete estadístico SAS versión 8.2 (1989).

3.6.1.3. Determinación del tiempo letal medio (TL_{50}) de las CL_{50} y CL_{90} de las cepas de *B. brongniartii*.

El objetivo de este ensayo fue determinar el tiempo necesario para matar el 50% de la población larval con la CL_{50} y CL_{90} de cada una de las tres cepas. Para ambas especies de polilla se evaluaron siete tratamientos: CL_{50}, CL_{90}, $CL_{50'}$, $CL_{90'}$, $CL_{50''}$, $CL_{90''}$ y $CL_{50'''}$ de las tres cepas y un testigo. La metodología utilizada fue similar al ensayo anterior. Para cada tratamiento se utilizaron 60 larvas agrupadas en 6 repeticiones de 10 larvas individualizadas cada una. Se evaluó diariamente por 12 días registrándose la mortalidad. El porcentaje de mortalidad se comparó mediante la prueba de proporciones Z. Con los datos de mortalidad diaria acumulada se determinó el TL_{50} para cada CL_{50} y CL_{90} con sus respectivos límites de confianza mediante el análisis de Probit (SAS Institute Inc, 1998).
3.6.2. Efecto entomopatógeno de las cepas de *B. brongniartii* sobre los estados de desarrollo de *P. operculella* y *S. tangolias*.

Se realizaron estudios complementarios del efecto de las CL_{50} y CL_{90} de las tres cepas de *B. brongniartii* determinadas en larvas de primer estado de *P. operculella* y *S. tangolias* en los estados de huevo, larva de último estado y pupa de cada insecto.

3.6.2.1. Huevo.

Para cada especie de polilla se evaluaron siete tratamientos: CL_{50}, CL_{90} de cada cepa y un testigo. Para cada tratamiento se realizaron 10 repeticiones de 10 huevos cada una lo que hizo un total de 100 huevos por tratamiento. Se cortaron porciones de papel filtro conteniendo cada uno 10 huevos de la misma edad (1 día de edad) los cuales fueron sumergidos en 10 ml de la solución conidial durante un minuto. Luego, las porciones de papel filtro fueron colocados sobre papel toalla para eliminar el exceso de humedad. Posteriormente cada porción de papel filtro se colocó en placas Petri conteniendo papel filtro humidificado para facilitar el desarrollo del hongo. La evaluación se llevó a cabo al eclosionar los huevos del testigo (5 días para *P. operculella* y 7 días para *S. tangolias*).

Los huevos que no eclosionaron se colocaron sobre las rodajas de papa durante 3 días para permitir su eclosión, posteriormente las porciones de papel que contenían huevos no eclosionados fueron colocadas nuevamente en cámara húmeda, para facilitar el crecimiento del micelio. Se efectuó un seguimiento de las larvas, lo que permitió detectar los efectos latentes de las exposiciones de huevos de *B. brongniartii* en la mortalidad de larvas de primer estado. Para ello las larvas pertenecientes a cada repetición fueron colocadas en rodajas de papa y evaluadas a los 7 días.

Se registró el número de huevos eclosionados, huevos no viables y el número de huevos que presentaron crecimiento del hongo en su superficie, número de larvas vivas, larvas muertas y larvas infectadas. Las larvas muertas fueron colocadas en cámaras húmedas para constatar la presencia del hongo. Se utilizó un diseño al azar. Los resultados de las variables evaluadas fueron analizados en número para lo cual fueron transformadas a raíz cuadrada \sqrt{x}, sometiéndolas a un análisis de varianza (ANOVA) y a una comparación de promedios mediante la prueba de Dunnett ($P<0.05$).

3.6.2.2. Larvas de último estado.

Para cada especie de polilla se evaluaron siete tratamientos: CL_{50}, CL_{90} de las tres cepas y un testigo. Cada tratamiento constó de 60 larvas agrupadas en 6 repeticiones de 10 larvas de último estado. La metodología utilizada fue similar al ensayo con larvas. La evaluación se llevó a cabo a los 5 días de instalado el ensayo para *P. operculella* y a los 7 días para *S. tangolias*, registrándose el número de larvas muertas las cuales fueron colocadas en cámara húmeda para permitir el desarrollo del micelio y comprobar su infección.

Se efectuó un seguimiento de las pupas formadas de las larvas tratadas para
detectar los efectos latentes. Se registró el número de larvas vivas, larvas muertas, larvas infectadas, adultos emergidos, pupas no viables y pupas con micosis. Se utilizó un diseño al azar. Los resultados de las variables evaluadas fueron transformadas a √x y sometidas a un análisis de varianza (ANOVA) y a una comparación de promedios mediante la prueba de Dunnett (P<0.05).

3.6.2.3. Pupa.

Para cada especie de polilla se evaluaron siete tratamientos: \(CL_{50} \), \(CL_{90} \) de cada cepa y un testigo. Para cada tratamiento se realizaron 10 repeticiones de 10 pupas de tres días de edad cada una lo que hizo un total de 100 pupas por tratamiento. La evaluación se inició al emerger los adultos del testigo, siendo para \(P. operculellia \) a los 3 días de instalado el ensayo y para \(S. tangolias \) a los 5 días. Se registró el número de adultos que emergen, pupas pasmadas y pupas infectadas.

Se utilizó un diseño al azar. Los resultados de las variables evaluadas fueron transformadas a √x y sometidas a un análisis de varianza (ANOVA) y a una comparación de promedios mediante la prueba de Dunnett (P<0.05).

También se evaluaron los adultos obtenidos de las pupas tratadas. Los adultos de cada tratamiento fueron colocados en vasos de oviposición en grupo de dos parejas evaluándose el número total de huevos depositados. Los cadáveres fueron colocados en cámara húmeda para verificar la presencia del hongo. Se evaluaron adultos sanos y adultos infectados. Se determinó el promedio de huevos por hembra proveniente de cada tratamiento.
CAPÍTULO IV. RESULTADOS

4.1. Caracterización morfológica, fisiológica y molecular de las cepas de *B. brongniartii*.

4.1.1. Caracterización morfológica de las cepas de *B. brongniartii*.

4.1.1.1. Morfología macroscópica.

En medio de cultivo APD y a 22°C, las tres cepas presentaron colonias de aspecto algodonoso con superficie semi-elevada y crecimiento moderado. Las colonias presentaron una amplia variación en el color del micelio, siendo blanco durante el crecimiento micelial tornándose crema al comienzo a producir conidias. Al comenzar a producir las conidias la cepa CIPCu1(44) conservó su aspecto algodonoso mientras que las cepas CIPCa18(85) y CIPH1(1) se tornaron pulverulentos con superficie aplanada (Figura 13 a).

La cepa CIPCa18(85) produjo un pigmento rojo que se difundió en el medio de cultivo, la cepa CIPH1(1) también produjo este pigmento pero no en todos los cultivos mientras que la cepa CIPCu1(44) produjo un pigmento amarillo que se difundió en el...
medio de cultivo (Figura 13 b). Solo la cepa CIPCu1(44) presentó sinemias (estructuras alargadas ramificadas) al ser reactivado en su hospedero original, durante su desarrollo en medio APD y en todos los tratamientos (Tabla 2).

4.1.1.2. Morfología microscópica.

Observaciones realizadas al microscopio permitieron diferenciar a las conidias de las tres cepas de acuerdo al tamaño y forma, separándolas en dos grupos: las cepas CIPCa18(85) y CIPH1(1) que presentaron conidias elípticas, y otro grupo con la cepa CIPCu1(44) que presentó conidias redondas y pequeñas.

El promedio de largo y ancho de las conidias para las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) fue de 4.02 µm y 3.72 µm, 2.88 µm y 2.61µm, 3.79µm y 3.41µm respectivamente. El índice L/A (proporción entre el largo y ancho de las conidias) fue de 1.09, 1.11 y 1.12 para las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) respectivamente (Tabla 3).

Las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) presentaron células conidóforas propias de la especie B. brongniartii.

4.1.2. Caracterización fisiológica de las cepas de B. brongniartii.

4.1.2.1. Porcentaje de germinación (viabilidad).

Las tres cepas presentaron un alto porcentaje de germinación a las 24 horas, con valores de 99.07%, 99.74% y 95.40% para las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) respectivamente, no encontrándose diferencias significativas ($P>0.05$) por lo que las tres cepas fueron consideradas de buena calidad biológica (Tabla 4).

4.1.2.2. Producción de conidias (esporulación).

Las tres cepas presentaron una alta producción de conidias a los 15 días de sembrado, con valores mayores de 10^7 conidias/ml. El análisis de varianza (ANOVA) determinó diferencias altamente significativas para esta variable ($P<0.01$). La cepa CIPH1(1) presentó el valor más alto, produciendo 2.1×10^8 conidias/ml en comparación con las cepas CIPCa18(85) y CIPCu1(44) las cuales produjeron 12.7×10^7 y 9.25×10^7 conidias/ml respectivamente (Tabla 5).

4.1.2.3. Crecimiento radial (tasa de crecimiento).

La línea de regresión obtenida con los valores de crecimiento radial diario indica que el crecimiento radial para las tres cepas a los 15 días de sembrados es directamente proporcional al tiempo (Figura 14). Las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) presentaron una tasa de crecimiento de 0.173 ± 0.005 cm/día, 0.183 ± 0.003 cm/día y 0.169 ± 0.003 cm/día respectivamente. Los límites de confianza de estos valores se traslapan, indicando que no hay diferencia significativa en el crecimiento radial de estas cepas (Tabla 6).
4.1.3. Caracterización molecular de las cepas de *B. brongniartii* mediante la técnica RAPD.

Mediante el cultivo en caldo papa dextrosa se obtuvieron entre 2 a 3 g de micelio filtrado para la cepa de *B. bassiana* y para cada una de las tres cepas de *B. brongniartii*. El protocolo de extracción de DNA utilizado permitió obtener una buena calidad de DNA con una concentración de 150 a 200 ng/µl. Para el caso de la cepa CIPH1(1), se presentaron 3 bandas adicionales, los cuales están relacionados con la presencia de micovirus (A. Schrank, Departamento de Biología Molecular y Biotecnología, Universidad Federal do Rio Grande do Sul, Brasil, 2002, comunicación personal), sin embargo, estas bandas no interfirieron con la amplificación del DNA.

De los diez iniciadores utilizados, solo seis de ellos produjeron 175 bandas de las cuales 97 fueron polimórficas (Figura 15). Se obtuvo un dendograma que agrupó a la cepa de *B. bassiana* y a las tres cepas de *B. brongniartii* en dos grupos, el primer grupo conformado por las cepas CIPCa18(85) y CIPH1(1), con una similaridad del 62%, mientras que el segundo grupo estuvo conformado por las cepas CIPCu1(44) y CIPLM1 (*B. bassiana*), los cuales presentaron una similaridad del 50.4%. Ambos grupos presentaron un 42% de similaridad (Figura 16).

4.2. Evaluación de la actividad entomopatógena de las cepas de *B. brongniartii* sobre *Phthorimaea operculella* y *Symmetrischema tangolias*.

4.2.1. Efecto de las cepas de *B. brongniartii* en larvas de primer estadio de *P. operculella* y *S. tangolias*.

4.2.1.1. Patogenicidad.

La aparición del micelio ocurre a partir de las 24 horas de la muerte del insecto al ser colocado en condiciones de alta humedad (Figura 17). Las tres cepas de *B. brongniartii* esporularon en los cadáveres de *P. operculella* y *S. tangolias*, adquiriendo un aspecto pulverulento, sin embargo, para el caso de la cepa CIPCu1(44), se observó además la formación de sinemias. La esporulación es un aspecto importante en la formulación de bioinsecticidas con potencial epizoótico.

P. operculella. Todos las cepas fueron altamente patogénicas para este insecto con una concentración de 10^7 conídas/ml. Se obtuvo un porcentaje de mortalidad del 2% para el testigo, 100% para CIPCa18(85), 100% para CIPCu1(44) y 95% para CIPH1(1). El análisis de varianza para la variable mortalidad total muestra diferencias significativas

"Programa Cybertesis PERÚ - Derechos son del Autor"
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimae opercullella (Zeller) y Symmetricschema tangolias (Gyen).

<0.05), sin embargo, debido a los altos porcentajes las tres cepas fueron utilizadas en ensayos posteriores. El testigo no presentó larvas con micosis mientras que las cepas CIPCa18(85), CIPH1(1) y CIPCu1(44) presentaron 91%, 86% y 74% de micosis respectivamente siendo este último valor significativamente diferente (P<0.05) (Figura 18).

S. tangolias. El testigo presentó 4% de mortalidad mientras que las tres cepas causaron una mortalidad del 95% para cada uno, no presentando diferencias significativas (P>0.05). Las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) presentaron 91%, 85% y 93% de micosis respectivamente, valores que tampoco fueron significativos (P>0.05). Al no presentarse diferencias significativas en la mortalidad de las tres cepas de *B. brongniartii*, estas fueron utilizadas en ensayos posteriores (Figura 19).

4.2.1.2. Virulencia

P. opercullella. Las concentraciones 10^8, 10^7, 10^6 y 10^5 conidias/ml de la cepa CIPCa18(85) superaron el 50% de mortalidad con un porcentaje de mortalidad acumulado de 96.67%, 96.67%, 60% y 53.33% respectivamente y cada concentración presentó un TL_{50} de 1.94, 2.93, 4.68 y 5.56 días respectivamente. El TL_{50} de la concentración 10^8 conidias/ml fue significativamente diferente a los demás TL_{50} debido a que sus límites de confianza no se traslapan con los otros (Tabla 7).

Para la cepa CIPCu1(44), solo las concentraciones 10^8, 10^7 y 10^6 conidias/ml causaron mortalidades mayores al 50%, siendo el porcentaje de mortalidad de 98.33%, 98.33% y 61.67% para cada concentración respectivamente. Los TL_{50} de cada concentración fueron significativamente diferentes entre sí con valores de 2.06, 3.9 y 5.67 días respectivamente, valores sin diferencias significativas debido a que sus límites de confianza no se traslapan (Tabla 8).

Las concentraciones 10^8, 10^7 y 10^6 conidias/ml de la cepa CIPH1(1) causaron una mortalidad mayor al 50%, siendo los valores de las mortalidades acumuladas de 10%, 98.33% y 58.33% respectivamente. El TL_{50} obtenido con la concentración 10^6 conidias/ml fue de 1.45 días, siendo significativamente diferente a los demás valores de TL_{50} debido a que sus límites de confianza no se traslapan con los límites de las otras concentraciones (Tabla 9).

S. tangolias. Al igual que en el caso de *P. opercullella*, el TL_{50} aumenta conforme aumenta la concentración. Las concentraciones 10^8, 10^7 y 10^6 conidias/ml de la cepa CIPCa18(85) superaron el 50% de mortalidad presentando un TL_{50} de 2.54, 4.72 y 5.59 días respectivamente. Las mortalidades acumuladas para las concentraciones 10^8, 10^7 y 10^6 conidias/ml fueron 96.67%, 68.33% y 58.33% respectivamente. La concentración 10^6 conidias/ml presentó el menor TL_{50} (2.54 días), siendo significativamente diferente a los TL_{50} de las demás concentraciones debido a que sus límites de confianza no se traslapan (Tabla 10).

Para la cepa CIPCu1(44), solo la concentración 10^8 conidias/ml superó el 50% de mortalidad, presentando un TL_{50} de 3.98 días (Tabla 11).

Con la cepa CIPH1(1), solo las concentraciones 10^8 y 10^7 conidias/ml superaron el 50% de mortalidad con un TL_{50} de 3.66 y 3.99 días respectivamente, valores que no
presentaron diferencias significativas y una mortalidad acumulada de 81.67% y 71.67% respectivamente (Tabla 12).

4.2.1.3. Determinación de la CL₅₀ y CL₉₀ de las cepas de <i>B. brongniartii</i>.

P. operculella. El porcentaje de mortalidad aumentó conforme se incrementó la concentración. Los porcentajes de mortalidad total y larvas infectadas presentaron diferencias altamente significativas (<i>P</i><0.01) sin embargo, los tratamientos con 10⁴, 10³ conidias/ml y el testigo presentaron un porcentaje de mortalidad y micosis sin diferencias significativas según el análisis Waller-Duncan (<i>P</i>>0.05). (Tabla 13).

Los valores de las CL₅₀ halladas para las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) fueron 2.71 x 10⁵, 5.53 x 10⁵ y 5.19 x 10⁵ conidias/ml, siendo la cepa CIPCa18(85) la que presentó la menor CL₅₀. Los límites de confianza se traslapan entre sí indicando que no existen diferencias significativas entre estos valores. Los valores para las CL₉₀ halladas para las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) fueron 6.81 x 10⁵, 1.22 x10⁶ y 5.97 x 10⁵ conidias/ml respectivamente, siendo la cepa CIPH1(1) la que presentó la menor CL₉₀. Los valores de las pendientes obtenidas para las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) fueron 0.92, 0.95 y 1.21 respectivamente (Tabla 14, Figura 20).

S. tangolias. Al igual que en el caso de <i>P. operculella</i>, el porcentaje de mortalidad total fue directamente proporcional a la concentración. Las variables mortalidad total y larvas infectadas presentaron valores altamente significativos (<i>P</i><0.01) sin embargo, los tratamientos con 10⁴, 10³ conidias/ml y el testigo de la variable larvas infectadas no presentaron diferencias significativas entre ellos (Tabla 15).

Los resultados del análisis Probit muestran que las CL₅₀ halladas para las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) fueron 1.16 x 10⁵, 9.37 x 10⁵ y 4.52 x 10⁵ y conidias/ml respectivamente mientras que las CL₉₀ halladas para las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) fueron 6.01 x 10⁶, 1.46 x10⁶ y 2.17 x 10⁶ conidias/ml respectivamente, siendo la cepa CIPCa18(85) la que presentó la menor CL₉₀. Los valores de las pendientes obtenidas para las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) fueron 0.75, 0.58 y 0.76 respectivamente (Tabla 16, Figura 21).

4.2.1.4. Determinación del tiempo letal medio (TL₅₀) de las CL₅₀ y CL₉₀ de las cepas de <i>B. brongniartii</i>.

P. operculella. Tanto la CL₅₀ como la CL₉₀ causaron un efecto similar (Figura 22 y 23). Las CL₅₀ de las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) causaron una mortalidad total del 68.33%, 88.33% y 78.33% respectivamente, mientras que las CL₉₀ de las mismas cepas causaron una mortalidad total del 81.67%, 81.67% y 76.67% respectivamente. Comparando los porcentajes de mortalidad mediante la prueba de proporciones Z, la CL₉₀ de la cepa CIPCa18(85) causó el menor porcentaje de mortalidad y fue significativamente diferente a los demás valores de mortalidad. Los valores de TL₅₀ obtenidos para las CL₅₀ de las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) fueron de 5.29, 3.58 y 5.07 días respectivamente. Los valores de los TL₅₀ para las CL₉₀ de las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) fueron de 3.94, 3.62 y 3.98 días.
días respectivamente. Los límites de confianza se traslanan, indicando que no hay diferencias significativas entre todos los valores de TL\textsubscript{50} (Tabla 17).

S. tangolias. Las CL\textsubscript{50} de las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) causaron una mortalidad total del 50%, 46.67% y 48.33% respectivamente, mientras que las CL\textsubscript{50} causaron una mortalidad total de 76.67%, 81.67% y 50% respectivamente (Figura 24 y 25). Comparando los porcentajes de mortalidad mediante la prueba de proporciones Z, las CL\textsubscript{90} de las cepas CIPCa18(85) y CIPCu1(44) causaron los mayores porcentajes de mortalidad y fueron significativamente diferentes a los demás porcentajes de mortalidad. Los valores de TL\textsubscript{50} para las CL\textsubscript{50} de las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) fueron de 9.67, 10.57 y 9.26 días mientras que con las CL\textsubscript{90} de cada cepa los TL\textsubscript{50} fueron de 3.86, 3.43 y 8.68 días respectivamente. Los límites de confianza indican que los TL\textsubscript{50} de las CL\textsubscript{90} de las tres cepas no presentaron diferencias significativas, mientras que los TL\textsubscript{50} de la CL\textsubscript{50} de la cepa CIPH1(1) presentó diferencias significativas con el TL\textsubscript{50} de las cepas CIPCa18(85) y CIPCu1(44), siendo el menor valor de TL\textsubscript{50} (Tabla 18).

4.2.2. Efecto entomopatógeno de las cepas de B. brongniartii sobre los estados de desarrollo de P. operclella y S. tangolias.

4.2.2.1. Huevo.

P. operclella. La variables huesos no viables y larvas emergidas presentaron valores no significativos (P\textsubscript{0.05}) mientras que la variable huevos infectados presentó valores altamente significativos (P<0.01) según el análisis de varianza (ANOVA), siendo el tratamiento con la CL\textsubscript{90} de la cepa CIPCu1(44) la que causó el mayor número de huevos infectados (6 huevos) siendo este valor significativamente diferente al testigo según la prueba de Dunnett. El testigo no presentó huevos infectados.

Las larvas emergidas de los huevos tratados fueron afectadas por las tres cepas. La variable larvas sanas fue altamente significativa (P<0.01), siendo el tratamiento con la CL\textsubscript{90} de la cepa CIPCu1(44) el que presentó el menor número de larvas sanas (52), valor que fue significativamente diferente al testigo. La variable larvas muertas presentó valores no significativos (P>0.05), sin embargo el tratamiento con la CL\textsubscript{90} de la cepa CIPCu1(44) provocó el mayor número de larvas muertas (21 larvas). La variable larvas infectadas fue altamente significativa (P<0.01), siendo el tratamiento con la CL\textsubscript{90} de la cepa CIPCu1(44) el que causó el mayor número de larvas infectadas (21) y fue significativamente diferente al testigo (Figura 26, Tabla 19).

S. tangolias. La variables larvas emergidas y huevos infectados presentaron valores altamente significativos (P>0.01), mientras que la variable huevos no viables solo presentó valores significativos (P<0.05) según el análisis de varianza (ANOVA). El tratamiento con la CL\textsubscript{50} de la cepa CIPCu1(44) presentó 27 larvas emergidas y los tratamientos con las CL\textsubscript{90} de las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) presentaron 71, 1 y 43 larvas emergidas respectivamente, siendo estos valores significativamente diferentes al testigo según el análisis de Dunnett. El tratamiento con la CL\textsubscript{50} de la cepa CIPH1(1) presentó 53 huevos infectados, mientras que la CL\textsubscript{50} y CL\textsubscript{90}...
de la cepa CIPCu1(44) causó 52 y 99 huevos infectados, siendo todos estos valores significativamente diferentes al testigo según el análisis de Dunnett.

Las larvas emergidas de los huevos tratados fueron afectadas por las tres cepas. La variable larvas sanas fue altamente significativa ($P<0.01$), siendo los tratamientos con las CL50 de las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) y los tratamientos con la CL90 de la cepa CIPCu1(44) los que presentaron los valores significativamente diferentes al testigo según la prueba de Dunnett. El tratamiento con la CL50 de la cepa CIPCu1(44) no presentó larvas sanas, ya que todos los huevos fueron infectados. La variable larvas infectadas fue altamente significativa ($P<0.01$), siendo la CL50 de las cepas CIPCa18(85), CIPCu1(44) y CIPH1(1) y la CL90 de la cepa CIPCa18(85) las que presentaron los valores significativamente diferentes al testigo (24, 20, 14 y 45 larvas infectadas respectivamente) (Figura 27, Tabla 20).

4.2.2.2. Larvas de último estadio.

P. operculella. La variables larvas sanas, larvas muertas y larvas infectadas presentaron valores altamente significativos ($P<0.01$) según el análisis de varianza (ANOVA). Los tratamientos con la CL50 de la cepa CIPCu1(44) y con las CL50 de las cepas CIPCa18(85) y CIPCu1(44) presentaron 30, 27 y 6 larvas sanas respectivamente, valores que fueron estadísticamente diferentes al testigo (Dunnett, $P<0.05$). Los tratamientos con la CL50 y CL90 de las cepas CIPCa18(85) y CIPCu1(44) presentaron 12, 23, 26 y 35 larvas infectadas, valores que fueron significativamente diferentes al testigo (Dunnett, $P<0.05$). El testigo no presentó larvas infectadas (Figura 28, Tabla 21).

Según el análisis de varianza (ANOVA), las pupas formadas a partir de las larvas tratadas presentaron valores de infección altamente significativos ($P<0.01$), siendo los tratamientos con la CL50 y CL90 de la cepa CIPH1(1) los que presentaron 4 pupas infectadas, valores significativamente diferentes al testigo (Dunnett, $P<0.05$). La variable adultos emergidos fue altamente significativa ($P<0.01$) siendo los tratamientos con la CL50 de la cepa CIPCu1(44) y la CL90 de las cepas CIPCa18(85) y CIPCu1(44) los que presentaron el menor número de adultos emergidos (20, 17 y 2 respectivamente), los cuales fueron significativamente diferentes al testigo (Dunnett, $P<0.05$).

S. tangolias. Según el análisis de varianza (ANOVA), las variables larvas sanas y larvas infectadas presentaron valores altamente significativos ($P<0.01$) mientras que la variable larvas muertas es significativa ($P<0.05$). El tratamiento con la CL50 de la cepa CIPCa18(85) presentó 51 larvas sanas, valor sin diferencias con el testigo, mientras que los demás tratamientos con todas las cepas presentaron valores significativamente diferentes al testigo (Dunnett, $P<0.05$), siendo los tratamientos con las CL50 y CL90 de la cepa CIPCu1(44) los que presentaron el menor número de larvas sanas (2 y 3 larvas respectivamente). Para la variable larvas infectadas, sólo el tratamiento con la CL50 de la cepa CIPCa18(85) no presentó diferencias con el testigo, mientras que los demás tratamientos presentaron valores significativamente diferentes al testigo, siendo la CL50 y CL90 de la cepa CIPCu1(44) la que causó el mayor número de larvas infectadas (53 y 45 respectivamente) (Dunnett, $P<0.05$) (Tablas 22).

Las pupas formadas a partir de las larvas tratadas presentaron valores de infección
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmetrisciema tangolias (Gyen).

que no fueron significativos ($P>0.05$). La variable adultos emergidos fue altamente significativa ($P<0.01$) siendo sólo el tratamiento con la CL_{50} de la cepa CIPCa18(85) el que presentó 33 adultos emergidos, valor que no fue significativamente diferente con el testigo a diferencia de los demás tratamientos para todas las cepas que presentaron valores significativamente diferentes al testigo (Dunnett, $P<0.05$). Con la CL_{50} y CL_{90} de la cepa CIPCu1(44) no se obtuvieron adultos ya que todos los insectos fueron afectados en el estado de larva (Figura 29).

4.2.2.3. Pupa.

P. operculella. La variable pupas infectadas no presentó valores significativos ($P>0.05$) según el análisis (ANOVA). Las variables adultos emergidos y pupas muertas presentaron valores altamente significativos ($P<0.01$), siendo los tratamientos con las CL_{90} de las cepas CIPCa18(85) y CIPCu1(44) los que presentaron valores significativamente diferentes al testigo según el análisis de Dunnett, presentando el menor número de adultos emergidos (84 y 76 respectivamente) así como el mayor número de pupas no viables (15 y 22 respectivamente) (Figura 30, Tabla 23).

El número de adultos infectados fue mínimo, siendo una variable no significativa ($P>0.05$).

El promedio de huevos por hembra para el testigo fue de 88.1 mientras que los tratamientos con las tres cepas presentaron promedios entre 56 y 99.5 huevos por hembra. El menor valor lo presentó el tratamiento con la CL_{50} de la cepa CIPCa18(85) y el mayor valor el tratamiento con la CL_{90} de la cepa CIPH1(1) (Tabla 23).

S. tangolias. Las variables adultos emergidos, pupas no viables y pupas infectadas presentaron valores altamente significativos ($P<0.01$). Para la variable pupas infectadas, todos los tratamientos con todas las cepas en sus dos concentraciones causaron infección en las pupas, siendo el tratamiento con la CL_{90} de la cepa CIPCu1(44) la que presentó el mayor número de pupas infectadas (97). Todos estos valores fueron significativamente diferentes al testigo (Dunnett, $P<0.05$). El número de adultos emergidos fue significativamente diferente al testigo, siendo sólo el tratamiento con la CL_{90} de la cepa CIPCu1(44) el que no presentó adultos emergidos.

Las variables adultos sanos y adultos infectados presentaron valores altamente significativos ($P<0.01$). Sólo el tratamiento con la CL_{90} de la cepa CIPH1(1) presentó adultos infectados (8), siendo este valor significativamente diferente al testigo mientras que los demás tratamientos no presentaron adultos infectados o no se obtuvieron adultos (Figura 31).

El promedio de huevos por hembra para el testigo fue de 21.92 mientras que las hembras provenientes de los tratamientos con las CL_{50} de las cepas CIPCa18(85) y CIPH1(1) presentaron un promedio de 0.75 y 5.125 huevos por hembra respectivamente (Tabla 24). No se obtuvieron datos para el resto de concentraciones debido a que las pupas no fueron viables o no se obtuvieron hembras.

De acuerdo con la prueba de proporciones de Z para la comparación de promedios, las larvas de primer y cuarto estadío de *P. operculella* son los estados de desarrollo más
susceptibles a la CL_{50} y CL_{90} de cada una de las tres cepas de $B.\ bronniartii$ (Figura 32). En el caso de $S.\ tangolias$, todos los estados de desarrollo fueron susceptibles (Figura 33).
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmetrischema tangolias (Gyen).
CAPÍTULO V. DISCUSIÓN

5.1. Caracterización morfológica, fisiológica y molecular de las cepas de *B. brongniartii*.

5.1.1. Caracterización morfológica de las cepas de *B. brongniartii*.

Las características macroscópicas como aspecto, color, crecimiento, superficie y pigmentación en el medio de cultivo de cada cepa presentaron alta variabilidad, por lo que no pueden ser consideradas como únicos criterios para determinar la especie *B. brongniartii* al igual como lo señalan Varela y Morales (1996) al evaluar las variaciones morfológicas de *B. bassiana*. Las cepas CIPCa18(85) y CIPH1(1) presentaron colonias características de *B. brongniartii*, mientras que la cepa CIPCu1(44) mantuvo su aspecto algodonoso incluso al comenzar su etapa de producción de conidias. Esta cepa formó sinemas de la misma forma como lo reportaron Vélez y Benavides (1990) para *B. bassiana*. Dado que los sinemas son estructuras para la eficiente dispersión de las conidias (Samson y Evans citados por Vélez y Benavides, 1990) esta cepa aventajaría en campo a las otras dos.

Las cepa CIPCa18(85) y CIPH1(1) causaron pigmentación roja en el medio de...

Según Brady (1979b), las conidias de B. brongniartii son hialinas, lisas y elipsoidales a diferencia de B. bassiana que presenta conidias hialinas, lisas y globosas (1979a), siguiendo este criterio podría considerarse que la cepa CIPCu1(44) es una variante de B. brongniartii. Las diferencias de tamaño encontradas podrían deberse a la variabilidad genética de la cepa, tal como lo indican Varela y Morales (1996) quienes al evaluar seis cepas de B. bassiana utilizando estos criterios, las agruparon en tres grupos de acuerdo al tamaño de conidias y dos grupos de acuerdo a la forma de las conidias (globosa y elipsoidal).

Determinar diferencias entre las especies de Beauveria siempre ha sido difícil, por lo que Glare e Inwood (1998) sugieren que las conidias con 3 μm de largo y una proporción de largo/anzo (L/A) igual o mayor a 2 pertenecen a B. brongniartii y que las conidias con un largo menor de 3 μm y una proporción L/A menor de 2 pertenece a otras especies de Beauveria. Para el caso de las cepas estudiadas, las cepas CIPCa18(85) y CIPH1(1) poseen conidias con una longitud promedio mayor de 3 μm (4,02 y 3,79 μm respectivamente) a diferencia de la cepa CIPCu1(44) que presenta una longitud promedio de 2,88 μm. De acuerdo al índice L/A, las tres cepas presentaron un índice menor a 2 (1,09 para CIPCa18(85), 1,11 para CIPCu1(44) y 1,12 para CIPH1(1)). Glare e Inwood (1998), encontraron una excepción a esta regla para la cepa F196 que ellos estudiaron, caracterizándola como B. brongniartii a pesar del índice menor a 2, debido a que la longitud que presenta es mayor de 3μm. Esta excepción podría aplicarse para el caso de las cepas CIPCa18(85) y CIPH1(1), que presentaron un índice L/A menor a 2 y un largo de 3μm, lo que indicaría que se tratan de cepas de B. brongniartii, no así para el caso de la cepa CIPCu1(44), que posee un índice L/A menor de 2 y una largo de conidia menor de 3μm. Estos resultados inducen a considerar que de acuerdo al criterio largo y ancho de conidia e índice L/A, las cepas CIPCa18(85) y CIPH1(1) son cepas típicas B. brongniartii y la cepa CIPCu1(44) es una variante de B. brongniartii.

La forma de las células conidióforas coincide con las observaciones realizadas por Brady (1979b) que las describe como células conidióforas solitarias o en pequeños grupos con la parte basal en forma subglobosa o con forma de botella.

5.1.2. Caracterización fisiológica de las cepas de B. brongniartii.

Ni el porcentaje de germinación ni el crecimiento radial permitieron establecer diferencias entre estas cepas. La producción de conidias entre las cepas estudiadas mostró diferencias significativas, resultados similares a los obtenidos por Vélez et al. (2000) quienes encontraron diferencias significativas de esta variable para B. bassiana. Esta observación permitió comparar el dendograma de variables moleculares con variables fisiológicas sin encontrarse relación entre ellas.

5.1.3. Caracterización molecular de las cepas de B. brongniartii
mediante la técnica RAPD.

Driver y Milner (1998) mencionan que el género Beauveria posee una amplia diversidad genética entre las especies B. bassiana y B. brongniartii y que solo las técnicas moleculares pueden establecer diferencias entre cepas debido a que las características morfológicas como el tamaño de conidias no son confiables para establecer diferencias.

En este estudio, la cepa CIPCu1(44) se diferencia de las cepas CIPCa18(85) y CIPH1(1) por el tamaño y forma de la conidia, siendo estas características similares a las conidias de B. bassiana, las diferencias se refuerzan al realizar la caracterización molecular, ya que el dendograma agrupa a las cepas CIPCu1(44) y CIPLM1 en un solo grupo. Estos mismos resultados lo obtuvieron Glare e Inwood (1998), quienes utilizando el criterio tamaño de conidias y marcadores moleculares agruparon diversas cepas de B. bassiana y B. brongniartii en un solo grupo.

Al comparar la agrupación genética de las cepas con la patogenicidad no se encontró relación entre la agrupaciones y la patogenicidad, ya que la patogenicidad se encuentra gobernada por muchos genes por los que serían muchos los marcadores ligados a la patogenicidad siendo difícil su diferenciación, tal como lo menciona Valderrama et al. (2000).

5.2. Evaluación de la actividad entomopatógena de las cepas de B. brongniartii sobre Phthorimaea operculella y Symmetricchema tangolias.

5.2.1. Efecto de las cepas de B. brongniartii en larvas de primer estadio de P. operculella y S. tangolias.

La observación de que la invasión del hongo al hemocele produce una parálisis en el insecto explicaría la inmovilidad observada en las larvas de primer estadio de P. operculella y S. tangolias, produciéndose la muerte a partir del segundo día. Las larvas muertas se tornaron rígidas y presentaron una coloración roja en el hemocele coincidiendo con las descripciones de Ferron (1978) y Wraith et al. (1998), volviéndose opaca y con gotas de exudado que aparecieron en los sitios de emergencia de la hifa del hongo tal como lo señala Huamaní (1997) al evaluar larvas de Spodoptera frugiperda tratadas con B. bassiana.

Con la concentración 10^9 conidias/ml las cepas evaluadas causaron una patogenicidad inespecífica, es decir, sin relación con el hospedero de origen de las tres cepas (Coleoptera, Lepidoptera) coincidiendo con los resultados obtenidos por Jiménez (1992) y Gonzáles (1993).

La cepa CIPCa18(85) provocó mortalidades mayores al 50% en las larvas de P.
Caracterización de tres cepas de Beauveria bronquiiartii (Saccardo) Petch y su virulencia en Phthorimaea opercula (Zeller) y Symmetrischema tangolias (Gyen).

opercula" aún con la concentración 10^5 conidias/ml, además los TL50 de las concentraciones 10^7, 10^6 y 10^5 conidias/ml no presentaron diferencias significativas entre sí lo que indicaría que la cepa CIPCa18(85) presenta una virulencia estable aún con concentraciones menores debido a que ha sido reactivada en un lepidóptero (S. tangolias), es decir, su efectividad fue mayor al ser reactivada en un huésped susceptible del mismo orden, tal como lo reportan Gonzáles et al. (1993).

La efectividad de las tres cepas disminuyó en S. tangolias, solo la cepa CIPCa18(85) mantuvo su virulencia y patogenicidad hasta con la concentración 10^5 conidias/ml, reafirmando la idea de que su mayor agresividad se debió a que fue obtenida y reactivada de S. tangolias, tal como lo indican Gonzáles et al. (1993). En cambio con la cepa CIPCu1(44), se alcanzaron mortalidades mayores al 50% con la concentración 10^8 conidias/ml. Esto indicaría que la efectividad de las cepas disminuye en S. tangolias. Esto se debe probablemente a que la crianza masal de P. opercula" se realizó con individuos provenientes de los campos de cultivo del CIP (La Molina, Lima) en donde su control se realiza mediante el uso de insecticidas y no con un hongo entomopatógeno, siendo más susceptible a la acción de B. brongniartii, necesitándose sólo concentraciones menores para causar mortalidades mayores al 50%.

En el caso de P. opercula" las altas concentraciones (10^8 y 10^7 conidias/ml) causaron alta mortalidad por lo que no se puede diferenciar entre estas cepas tal como sugieren Fuentes y Carballo (1995) debido a que estas concentraciones son altamente patogénicas. Probablemente las concentraciones menores de 10^7 conidias/ml permitirían diferenciar a las cepas y separarlas por su patogenicidad. Se puede asegurar que estas cepas a concentraciones 10^8 y 10^7 conidias/ml son efectivas y que se podría utilizar la menor concentración para obtener una alta mortalidad de larvas tal como lo mencionan Fuentes y Carballo (1995).

La cepa CIPCa18(85) presentó una mortalidad de 98,33% y una micosis de 90%, en cambio la cepa CIPH1(1) presentó una mortalidad del 100% pero una micosis de 76,67%. Aponte y Uribe (2001) indican la presencia de diferentes estrategias de virulencia, siendo deseable la estrategia donde se desarrolle un mayor crecimiento micelial del hongo dentro del hospedero aumentando las posibilidades de desarrollo de epizootias en el campo.

Cuando el hongo es utilizado en dosis bajas, la concentración de la oosporeina u otro antibiótico producido es menor, por lo que al morir la larva no presentó la coloración rojiza característica, siendo invadido por microorganismos oportunistas que no permitieron que el micelio se desarrollara, esto explicaría los bajos porcentajes de micosis para las concentraciones 10^4 y 10^3 conidias/ml, valores sin diferencias significativas con el testigo. Estas observaciones coinciden con Noma y Strickler (2000) quienes utilizaron una CL50 de una cepa de B. bassiana en adultos de Lygus hesperus (Hemiptera: Miridae), no causando esporulación en los cadáveres de este insecto debido al crecimiento extensivo de hongos saprófiticos o bacterias los cuales inhiben el desarrollo de B. bassiana.

Las CL50 halladas para las tres cepas de B. brongniartii en P. opercula" tuvieron valores entre 2.71×10^7 - 5.53×10^8 conidias/ml, siendo similar al obtenido por Alves et. al. (1985), quienes determinaron la CL50 de una cepa de B. bassiana en pupas de Diatra saccharalis, el cual fue de 1.27×10^5 conidias/ml, es decir que todos estos...
valores se encuentran en un rango de \(10^5\) conidias/ml. Fuentes y Carballo (1995) obtuvieron para la cepa 447 de \(B.\) \(bassiana\) una CL\(_{50}\) de \(2.2 \times 10^5\) conidias/ml y una CL\(_{90}\) de \(5.1 \times 10^5\) conidias/ml determinadas en \(Plutella\) \(xylostella\), valores que se asemejan con los obtenidos para \(P.\) \(operculella\) en el presente trabajo. Los límites de confianza para las CL\(_{50}\) son amplios lo que sugiere inestabilidad de estas concentraciones en cuanto a su real efectividad tal como lo señalan Aponte y Uribe (2001).

Loa valores de la CL\(_{50}\) para \(S.\) \(tangolias\) estuvieron entre \(1.16 \times 10^6\) a \(9.37 \times 10^6\) conidias/ml, valores similares a los obtenidos por Gonzáles \(et\) \(al.\) (1996) al evaluar la cepa 447 en \(Ecdytoloph\) \(a\) \(torticola\), obteniendo una CL\(_{50}\) de \(2.44 \times 10^6\) conidias/ml. Sin embargo, Aponte y Uribe (2001) evaluaron cepas de \(B.\) \(bassiana\) en \(Spodoptera\) \(frugiperda\) obteniendo las CL\(_{50}\) entre \(9.5 \times 10^6\) a \(1.1 \times 10^8\) conidias/ml, valores mayores a los obtenidos en el presente trabajo.

Los valores de las pendientes para ambas especies presentaron valores entre 0.75 a 1.21 a diferencia de los valores obtenidos por Gonzáles \(et\) \(al.\) (1996) que determinaron para las cepas 447 y A4 pendientes con valores de 4.33 y 3.13 respectivamente. En los ensayos con \(S.\) \(tangolias\), las cepas CIPCa18(85) y CIPH1(1) fueron las más virulentas debido a que presentaron las mayores pendientes con valores similares entre ellas, sin embargo, la cepa CIPCa18(85) tuvo la menor CL\(_{50}\), siendo la más efectiva para el control debido a que presentó las características deseadas en un entomopatógeno como la menor CL\(_{50}\) y virulencia alta determinada por la pendiente. Los límites de confianza para las CL\(_{50}\) también fueron amplios lo que sugiere inestabilidad de estas concentraciones (Aponte y Uribe, 2001).

\(S.\) \(tangolias\) presentó CL\(_{50}\) en un rango de \(10^6\) conidias/ml a diferencia de \(P.\) \(operculella\) que presentó sus CL\(_{50}\) en un rango de \(10^5\) conidias/ml. Esto podría deberse a que este insecto proviene de lugares donde se acostumbra a utilizar \(B.\) \(brongniartii\) para el control del “gorgojo de los Andes”, además el módulo de crianza de \(S.\) \(tangolias\) que se mantiene en el CIP es constantemente renovado con polillas provenientes de Huancayo.

Para las larvas del primer estadio de \(P.\) \(operculella\) las CL\(_{50}\) de las tres cepas de \(B.\) \(brongniartii\) presentaron valores de TL\(_{50}\) similares (entre 3 a 5 días) a diferencia de los obtenidos para \(S.\) \(tangolias\) que presentó un rango de 9-10 días, es decir que se necesitó mayor tiempo para que el hongo provocara un 50% de mortalidad en \(S.\) \(tangolias\). Esto demostraría que \(P.\) \(operculella\) fue más susceptible que \(S.\) \(tangolias\) debido a que su muerte ocurrió en menor tiempo.

Para ambas especies, la mortalidad se incrementó al aumentar los días alcanzando solo hasta el 50% para el caso de las CL\(_{50}\) y solo hasta el 90% para el caso de las CL\(_{90}\). Este comportamiento es típico de un hongo ya que las conidias se desecan o son expulsadas mediante la muda (Vandenberg \(et\) \(al.,\) 1998), es decir, el producto pierde efectividad en el transcurso del tiempo o es expulsado del cuerpo del insecto por medio de los mecanismos de defensa del insecto.

5.2.2. Efecto entomopatógeno de las cepas de \(B.\) \(brongniartii\) sobre
los estados de desarrollo de *P. operculella* y *S. tangolias*.

El estado de huevo en ambas especies presenta una corta duración, debido a esto la enfermedad se manifiesta posteriormente en larvas de primer estadío, coincidiendo con las observaciones de Fargues (1973), citado por Zúñiga y Redolfi (1981). Estas observaciones coinciden con los resultados obtenidos con *P. operculella* ya que las cepas de *B. brongniartii* provocaron un efecto mínimo sobre los huevos y larvas de *P. operculella* emergidas de los huevos tratados. Este efecto también podría estar relacionado con las barreras físicas propias del corión que impidió la colonización del embrión (Ramos *et al.*, 2000).

Utilizando 12.8 x 10⁶ conidias/ml de *B. bassiana*, Zúñiga y Redolfi (1981) obtuvieron un 71.55% de larvas infectadas emergidas de huevos tratados de *Spodoptera frugiperda*, el cual fue un porcentaje alto a diferencia de los resultados obtenidos para *S. tangolias* que fue de hasta 45% (45 larvas infectadas). Los altos niveles de micosis en huevos de *S. tangolias* se debería a que la superficie esculpida del corión del huevo da lugar a una mayor superficie de acción para el hongo favoreciendo la infección, es decir, mayor área de adherencia para mayor cantidad de conidias, presentándose una alta micosis (Figura 34). La mortalidad de las larvas emergidas estaría causada por la ingestión de esporas frescas que se encuentran entre las ornamentaciones del corión que ofrecerían condiciones favorables para la germinación de la conidia (Fargues, 1984).

El comportamiento de la larva próxima a la formación del estado de pupa cambia, presentando menor movimiento y dejando de alimentarse. Tal vez con estas condiciones, la susceptibilidad del insecto hacia agentes patógenos se incremente (Figura 35). En ensayos con larvas de primer, segundo, tercero y cuarto estadío de *P. xylostella*, Vandenberg *et al.* (1998) observaron que las larvas de tercer y cuarto estadío fueron más susceptibles a *B. bassiana* que las larvas de segundo estadío coincidiendo con Feng *et al.* (1985) citado por Vandenberg *et al.* (1998) quienes indicaron que esta susceptibilidad se debería probablemente a que los últimos estadíos presentan mayor duración y retienen su cutícula por mayor tiempo permitiendo que el patógeno posea mayor tiempo para establecerse e iniciar la infección.

Altre y Vandenberg (2001) encontraron que la cepa 1576 de *Paecilomyces fumosoroseus*, el cual en numerosos ensayos era la menos virulenta, se comportó como la más patogénica y la más virulenta cuando fue inyectado en larvas de último estadío de *Spodoptera frugiperda*, Penland *et al.* (1995) citado por Altre y Vandenberg (2001) hipotetizan que este efecto se debía a la disminución de la función de los hemocitos en el estado de prepupa.

Además, el testigo y todos los tratamientos presentaron una alta mortalidad debido a la contaminación por bacterias ya que las larvas utilizadas para los biensayos fueron recuperadas directamente de los tubérculos infestados, aumentando las posibilidades de contaminación. Esas observaciones coinciden con Zúñiga y Redolfi (1981) quienes indican que esta muerte por contaminación no se presenta en larvas de primer estadío ya que los huevos son colectados directamente en discos de papel filtro nuevo, permitiendo disminuir la contaminación.

En general las pupas poseen reservas alimenticias acumuladas durante su período
de larva, lo que constituiría una fuente de nutrientes para el desarrollo del hongo causando la infección. Las pupas de *S. tangolias* presentaron mayor cantidad de individuos infectados por *B. bronniartii* que las pupas de *P. operculella*. Esta susceptibilidad podría deberse a la duración del estado pupal de *S. tangolias* que permitiría la penetración del hongo a la cámara pupal hasta llegar al insecto y colonizar el hemocele. Para el caso de *P. operculella* la duración del estado pupal fue menor resultando en una baja infección (entre 1 a 2%) emergiendo el insecto adulto sin haber sido infectado. Esta emergencia fue mayor a la obtenida por Hafez *et al.* (1997), quienes utilizando *B. bassiana* con una concentración de 2.6×10^7 conidias/ml obtuvieron un porcentaje de emergencia de 53.3%.

El desarrollo del hongo se inició en la parte posterior de la pupa, invadiendo las estrías abdominales. El crecimiento del micelio se observó en las suturas, regiones intersegmentales y espiráculos (Figura 36), detalles que también fueron observados por Zúñiga y Redolfi (1981) y Huamaní (1997) en pupas de *S. frugiperda*.

El estado adulto presentó porcentajes de infección muy bajos para ambos insectos debido a la presencia de escamas que los protege de la infección a diferencia de las larvas cuya cutícula es más delgada y frágil. Los adultos infectados presentaron micelio en la cabeza y en las patas delanteras (Figura 37), lo que indicaría que adquirieron la infección durante la emergencia, al colocar sus patas delanteras en la cámara pupal, incluso, algunos adultos ya formados no lograron emerger completamente de la cámara pupal ya que presentaban las alas atrofiadas y micosis coincidiendo con las observaciones de Zúñiga y Redolfi (1981) quienes durante sus ensayos con *S. frugiperda*, observaron que algunas pupas fueron atacadas a la altura de las tecas alares, emergiendo los adultos con las alas atrofiadas.

La oviposición de *S. tangolias* fue menor al testigo, la mayor duración del estado pupal en *S. tangolias* permitió que el hongo invada al insecto y se desarrolle causando mayor efecto en los adultos ya sea produciéndoles micosis antes de salir completamente de la cámara pupal o debilitándolas, comprobándose este efecto durante la oviposición. En el caso del *P. operculella*, el estado de pupa tuvo menor duración por lo que no hubo efecto en la oviposición.

Tanto para *P. operculella* como para *S. tangolias*, cada vaso de oviposición presentó variaciones en la producción de huevos. Esto podría deberse a la deficiencia de nutrientes ya que los adultos no fueron alimentados. Similar observaciones fueron realizadas por Noma y Strickler (2000) quienes encontraron una alta variabilidad en la oviposición de cada individuo de *Lygus hesperus* sugiriendo que si bien la utilización de dietas enriquecidas podrían incrementar la fecundidad de *L. hesperus*, alterarían los resultados de sus experimentos.

En general, todos los estados de desarrollo de ambos insectos fueron susceptibles al ataque del hongo, pero en diferente grado, siendo el estado de larva el estado más susceptible coincidiendo con lo que indica Ferron (1978). Para el caso de *P. operculella*, los valores de las CL50 de las tres cepas se encontraban en un rango de 10^5 conidias/ml y los valores de las CL90 se encontraban en un rango de 10^7 a 10^8 conidias/ml resultando en una baja infección en los estados de huevo y pupa y en una mayor
susceptibilidad en larvas de primer y cuarto estadío, mientras que para S. tangolias los valores de las CL₅₀ de las tres cepas se encontraron en un rango de 10^6 conidias/ml y los valores de las CL₉₀ entre 10^8 a 10^9 conidias/ml resultando en una mayor susceptibilidad en todos los estados de desarrollo.
CONCLUSIONES

- La forma, tamaño de las conidias y la formación de sinemas de la cepa CIPCu1(44) difiere de la especie B. brongniartii tipo.
- El análisis molecular permite establecer que la cepa CIPCu1(44) está genéticamente más relacionada con la cepa CIPLM1 de B. bassiana.
- Con la concentración 10^9 conidias/ml, las tres cepas de B. brongniartii fueron altamente patogénicas en larvas de primer estadio de P. operculella y S. tangolias.
- La cepa CIPCa18(85) fue la más efectiva ya que causó mortalidades mayores al 50% aún con 10^5 conidias/ml.
- Las larvas de P. operculella fueron las más susceptibles a B. brongniartii debido a que los valores de las CL_{50} y CL_{90} fueron menores.
- La cepa CIPCa18(85) fue más efectiva para ambas especies debido a que presentó el menor valor de CL_{50}, indicando que tiene buena actividad bioinsecticida.
- Las larvas de P. operculella fueron las más susceptibles a B. brongniartii ya que sus TL_{50} fueron menores.
- Todos los estados de desarrollo de P. operculella y S. tangolias fueron afectados por las tres cepas de B. brongniartii siendo el estado larval el más susceptible.
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmetsrischema tangolias (Gyen).
RECOMENDACIONES

- Evaluar la cepa CIPCa18(85) en condiciones de invernadero para determinar su efectividad.
- Realizar una caracterización molecular de mayor cantidad de cepas de *B. brongniartii* con el fin de encontrar una relación entre las agrupaciones genéticas, patogenicidad, origen geográfico y hospedero de origen.
- Utilizar la técnica molecular (RNA) u otra técnica para separar completamente la cepa CIPCu1(44) *B. brongniartii* de CIPLM1 *B. bassiana*.
- Evaluar la actividad entomopatógena de la cepa CIPH1(1) y de otras cepas para determinar si la presencia de micovirus afecta en la virulencia del hongo.
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmetrischema tangolias (Gyen).
BIBLIOGRAFÍA

Caracterización de tres cepas de Beauveria bronquiiartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmetrischema tangolias (Gyen).
ANEXOS

MEDIOS DE CULTIVO

Para propagar el hongo *B. brongniartii* se emplearon dos medios de cultivo que de acuerdo a su consistencia son los siguientes:

Caldo papa dextrosa (CPD). Este medio se utilizó para la propagación del hongo por agitación, obteniéndose el micelio con el cual se realizaron las pruebas moleculares. Se cortan papas en trozos y se colocan en una olla con agua, dejándolos cocinar. Luego se colecta el líquido hervido y se filtra a través de algodón con gasa tomándose ½ litro del líquido en un matraz, finalmente se agrega 10 gr de dextrosa. Se coloca un tapón de algodón y se lleva al autoclave a 121°C por 20 minutos a 15 libras de presión. Al enfriar se le agrega 0.5 gr de estreptomicina para evitar que el medio se contamine con bacterias.

Agar papa dextrosa (APD). Este medio de cultivo fue utilizado para la propagación del hongo y la obtención de las conidias que fueron utilizadas en los bioensayos. Se cortan papas en trozos colocándolas en una olla y se deja cocinar. Luego se colecta el líquido a través de un algodón con gasa. El líquido filtrado se coloca en un matraz. Por cada litro se agregan 20 gr de agar y 20 gr de dextrosa. Se coloca un tapón de algodón y se lleva al autoclave a 121°C por 20 minutos a 15 libras de presión. Finalmente el medio es repartido en las placas de Petri en una cámara de flujo.

PREPARACIÓN DE REACTIVOS.

Azul de lactofenol.
Para 100 ml
Fenol 20 gr
Ácido láctico 20 ml
Glicerol 40 ml
Cotton blue 0.05 g

PREPARACIÓN DEL MATERIAL PARA RAPD

Protocolo de extracción (Aljanabi y Martínez, 1997)

Buffer de extracción:

- 0.4M NaCl
- 10 mM Tris-HCl pH 8.0
- 2 mM EDTA pH 8.0
- SDS 20%
- Proteinaza K 20 mg/ml
- NaCl 6M (NaCl saturado en agua)
- Etanol 70%

Buffer Tris-borato;
- Tris borato 108 gr
- Ácido bórico 55 gr
- EDTA 0.5M pH 8.0 40 ml

Diluir en un litro de agua destilada

TABLA 1. Origen de las cepas de Beauveria utilizadas en los diferentes ensayos.
<table>
<thead>
<tr>
<th>Código</th>
<th>Cepa</th>
<th>Fecha de colecta</th>
<th>Procedencia</th>
<th>Hospedero</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIPCa18(85)</td>
<td>Beauveria brongniartii.</td>
<td>Junio 1996</td>
<td>Santa Clotilde, Cajamarca. Perú.</td>
<td>Symmetrischema tangolias (Lepidoptera), larva</td>
</tr>
<tr>
<td>CI PH1(1)</td>
<td>Beauveria brongniartii.</td>
<td>1 Agosto 1994</td>
<td>Huancayo. Perú.</td>
<td>Premnotroypes suturicallus (Coleoptera), larva.</td>
</tr>
<tr>
<td>CIPLM1 *</td>
<td>Beauveria bassiana.</td>
<td>15 Noviembre 2001</td>
<td>La Molina, Lima, Perú.</td>
<td>Euscepes postfasciatus (Coleoptera), Adulto.</td>
</tr>
</tbody>
</table>

* Esta cepa fue utilizada en las pruebas moleculares (RAPD) para compararla con las cepas de B. brongniartii.

TABLA 2. Morfología macroscópica de tres cepas de *Beauveria brongniartii* sembradas en medio APD a 22°C.

<table>
<thead>
<tr>
<th>Cepa</th>
<th>Color</th>
<th>Aspecto</th>
<th>Superficie</th>
<th>Pigmento difundido en el medio</th>
<th>Formación de sinemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIPCa18(85)</td>
<td>Blanco Algodonoso</td>
<td>Semi-elevado</td>
<td>Rojo</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CIPCu1(44)</td>
<td>Blanco Algodonoso</td>
<td>Semi-elevado</td>
<td>Amarillo</td>
<td>Si *</td>
<td>Si *</td>
</tr>
<tr>
<td>CI PH1(1)</td>
<td>Blanco Algodonoso</td>
<td>Semi-elevado</td>
<td>Rojo</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

* La formación de sinemas es característica de *Beauveria bassiana*.

DE = desviación estándar

TABLA 4. Porcentaje de germinación de las cepas de *B. brongniartii* sembradas en medio APD y evaluadas a las 24 horas de incubación.

<table>
<thead>
<tr>
<th>Cepa</th>
<th>% Germinación</th>
<th>DE</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIPCa18(85)</td>
<td>99.07 A</td>
<td>0.54 (100 - 98.0)</td>
<td></td>
</tr>
<tr>
<td>CIPCu1(44)</td>
<td>99.74 A</td>
<td>0.29 (99.0 - 100)</td>
<td></td>
</tr>
<tr>
<td>CI PH1(1)</td>
<td>95.40 A</td>
<td>0.90 (94.0 - 97.0)</td>
<td></td>
</tr>
</tbody>
</table>

"Programa Cybertesis PERÚ - Derechos son del Autor"
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmertischema tangolias (Gyen).

ANOVA (P > 0.05)

DE = desviación estándar

Valores con la misma letra no presentan diferencias significativas según la prueba DLS (P<0.05)

DE = desviación estándar

TABLA 6. Análisis de la regresión del crecimiento radial (cm/día) de las cepas de B. brongniartii sembradas en APD (22°C) y evaluadas durante 15 días.

<table>
<thead>
<tr>
<th>Cepa</th>
<th>Intercepto ± DE</th>
<th>Límite de confianza (95%)</th>
<th>Tasa de crecimiento ± DE</th>
<th>Límite de confianza (95%)</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIPCa18(85)</td>
<td>0.490 ± 0.039</td>
<td>0.402 ± 0.579</td>
<td>0.173 ± 0.005</td>
<td>0.162 ± 0.183</td>
<td>0.9932</td>
</tr>
<tr>
<td>CIPCu1(44)</td>
<td>0.374 ± 0.025</td>
<td>0.307 ± 0.412</td>
<td>0.183 ± 0.003</td>
<td>0.179 ± 0.192</td>
<td>0.9972</td>
</tr>
<tr>
<td>CIPH1(1)</td>
<td>0.317 ± 0.029</td>
<td>0.238 ± 0.365</td>
<td>0.169 ± 0.003</td>
<td>0.165 ± 0.178</td>
<td>0.9958</td>
</tr>
</tbody>
</table>

Valores sin diferencias significativas debido al no traslape de los límites de confianza.

DE = desviación estándar

TABLA 7. Análisis Probit del tiempo letal medio (TL₅₀) de seis concentraciones B. brongniartii cepa CIPCa18(85) determinado en larvas de primer estadio de P. operculella.

<table>
<thead>
<tr>
<th>Concentración</th>
<th>n</th>
<th>Intercepto ± DE</th>
<th>Pendiente ± DE</th>
<th>TL<sub>50</sub></th>
<th>Límites de confianza (95%)</th>
<th>X²</th>
</tr>
</thead>
<tbody>
<tr>
<td>10<sup>-2</sup></td>
<td>60</td>
<td>-3.09 ± 0.45</td>
<td>10.68 ± 1.15</td>
<td>1.95</td>
<td>A</td>
<td>1.77-2.12</td>
</tr>
<tr>
<td>10<sup>-3</sup></td>
<td>60</td>
<td>-8.71 ± 2.51</td>
<td>18.66 ± 5.01</td>
<td>2.93</td>
<td>B</td>
<td>2.23-3.47</td>
</tr>
<tr>
<td>10<sup>-4</sup></td>
<td>60</td>
<td>-3.84 ± 0.97</td>
<td>5.72 ± 1.45</td>
<td>4.68</td>
<td>B</td>
<td>3.44-7.07</td>
</tr>
<tr>
<td>10<sup>-5</sup></td>
<td>60</td>
<td>-4.63 ± 1.04</td>
<td>6.22 ± 1.50</td>
<td>5.56</td>
<td>B</td>
<td>4.42-8.54</td>
</tr>
<tr>
<td>10<sup>-6</sup></td>
<td>60</td>
<td>-3.29 ± 0.49</td>
<td>1.93 ± 0.73</td>
<td>50.57</td>
<td>C</td>
<td>16.98-59420</td>
</tr>
<tr>
<td>10<sup>-7</sup></td>
<td>60</td>
<td>-5.15 ± 1.10</td>
<td>2.38 ± 1.59</td>
<td>144.39</td>
<td>D</td>
<td>-</td>
</tr>
</tbody>
</table>

* TL₅₀ con la misma letra son iguales entre si según el traslape de los límites de confianza.

DE = desviación estándar

TABLA 8. Análisis Probit del tiempo letal medio (TL₅₀) de seis concentraciones B. brongniartii cepa CIPCu1(44) determinado en larvas de primer estadio de P. operculella.
<table>
<thead>
<tr>
<th>Concentración</th>
<th>n</th>
<th>Interceptor ± DE</th>
<th>Pendiente ± DE</th>
<th>TL 50</th>
<th>Límites de confianza (95%)</th>
<th>X²</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻⁶</td>
<td>60</td>
<td>-4.01 ± 1.29</td>
<td>12.80 ± 3.35</td>
<td>2.06</td>
<td>A 1.37-2.58</td>
<td>14.60</td>
</tr>
<tr>
<td>10⁻⁷</td>
<td>60</td>
<td>-8.13 ± 1.29</td>
<td>13.73 ± 2.06</td>
<td>3.91</td>
<td>B 3.45-4.34</td>
<td>44.35</td>
</tr>
<tr>
<td>10⁻⁵</td>
<td>60</td>
<td>-4.75 ± 1.10</td>
<td>6.31 ± 1.59</td>
<td>5.67</td>
<td>C 4.49-9.14</td>
<td>15.79</td>
</tr>
<tr>
<td>10⁻⁴</td>
<td>60</td>
<td>-4.51 ± 0.62</td>
<td>4.42 ± 0.87</td>
<td>10.49</td>
<td>C 8.21-17.48</td>
<td>25.69</td>
</tr>
<tr>
<td>10⁻³</td>
<td>60</td>
<td>-5.90 ± 1.03</td>
<td>5.09 ± 1.39</td>
<td>14.39</td>
<td>C 9.87-46.55</td>
<td>13.45</td>
</tr>
<tr>
<td>10⁻²</td>
<td>60</td>
<td>-23.38 ± 8.36</td>
<td>25.32 ± 10.07</td>
<td>8.38</td>
<td>C 7.53-18.29</td>
<td>6.32</td>
</tr>
</tbody>
</table>

* TL 50 con la misma letra son iguales entre sí según el traslape de los límites de confianza.

DE = desviación estándar

TABLA 9. Análisis Probit del tiempo letal medio (TL 50) de seis concentraciones B. brongniartii cepa CIPH1(1) determinado en larvas de primer estadio de P. operculella.

<table>
<thead>
<tr>
<th>Concentración</th>
<th>n</th>
<th>Interceptor ± DE</th>
<th>Pendiente ± DE</th>
<th>TL 50</th>
<th>Límites de confianza (95%)</th>
<th>X²</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻⁰</td>
<td>60</td>
<td>-2.08 ± 0.39</td>
<td>12.92 ± 1.50</td>
<td>1.45</td>
<td>A 1.31-1.59</td>
<td>73.91</td>
</tr>
<tr>
<td>10⁻¹</td>
<td>60</td>
<td>-7.09 ± 1.55</td>
<td>12.21 ± 2.48</td>
<td>3.81</td>
<td>B 3.09-4.48</td>
<td>24.26</td>
</tr>
<tr>
<td>10⁻⁵</td>
<td>60</td>
<td>-6.80 ± 0.80</td>
<td>8.81 ± 1.11</td>
<td>5.91</td>
<td>C 5.52-6.44</td>
<td>63.44</td>
</tr>
<tr>
<td>10⁻⁴</td>
<td>60</td>
<td>-4.26 ± 0.59</td>
<td>3.89 ± 0.84</td>
<td>12.38</td>
<td>D 9.03-25.68</td>
<td>21.28</td>
</tr>
<tr>
<td>10⁻³</td>
<td>60</td>
<td>-6.14 ± 1.18</td>
<td>4.92 ± 1.59</td>
<td>17.63</td>
<td>D 10.75-146.54</td>
<td>9.52</td>
</tr>
<tr>
<td>10⁻²</td>
<td>60</td>
<td>-6.78 ± 1.62</td>
<td>4.87 ± 2.19</td>
<td>24.76</td>
<td>D 11.73-2030388</td>
<td>4.95</td>
</tr>
</tbody>
</table>

* TL 50 con la misma letra son iguales entre sí según el traslape de los límites de confianza.

DE = desviación estándar

TABLA 10. Análisis Probit del tiempo letal medio (TL 50) de seis concentraciones B. brongniartii cepa CIPCa18(85) determinado en larvas de primer estadio de S. tangolias.
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmetrischema tangolias (Gyen).

* TL\textsubscript{50} con la misma letra son iguales entre sí según el traslape de los límites de confianza.

\textit{DE} = desviación estándar

TABLA 11. Análisis Probit del tiempo letal medio (TL\textsubscript{50}) de seis concentraciones B. brongniartii cepa CIPCu1(44) determinado en larvas de primer estadio de S. tangolias.

<table>
<thead>
<tr>
<th>Concentración</th>
<th>n</th>
<th>Intercepto ± DE</th>
<th>Pendiente ± DE</th>
<th>TL\textsubscript{50}</th>
<th>Límites de confianza (95%)</th>
<th>(x^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-7})</td>
<td>60</td>
<td>-4.16 ± 0.46</td>
<td>6.94 ± 0.72</td>
<td>3.98</td>
<td>A 3.66-4.31</td>
<td>94.25</td>
</tr>
<tr>
<td>(10^{-5})</td>
<td>60</td>
<td>-6.69 ± 0.89</td>
<td>7.75 ± 1.20</td>
<td>7.31</td>
<td>B 6.59-8.61</td>
<td>41.42</td>
</tr>
<tr>
<td>(10^{-3})</td>
<td>60</td>
<td>-11.08 ± 2.63</td>
<td>11.09 ± 3.31</td>
<td>9.98</td>
<td>A 8.19-20.15</td>
<td>11.19</td>
</tr>
<tr>
<td>(10^{-2})</td>
<td>60</td>
<td>-9.33 ± 2.95</td>
<td>7.63 ± 3.80</td>
<td>16.69</td>
<td>B 9.71-2.6 x 10^0</td>
<td>4.03</td>
</tr>
<tr>
<td>(10^{-1})</td>
<td>60</td>
<td>-10.43 ± 4.67</td>
<td>7.93 ± 5.99</td>
<td>20.68</td>
<td>B -</td>
<td>1.72</td>
</tr>
</tbody>
</table>

* TL\textsubscript{50} con la misma letra son iguales entre sí según el traslape de los límites de confianza.

\textit{DE} = desviación estándar

TABLA 12. Análisis Probit del tiempo letal medio (TL\textsubscript{50}) de seis concentraciones B. brongniartii cepa CIPH1(1) determinado en larvas de primer estadio de S. tangolias.

<table>
<thead>
<tr>
<th>Concentración</th>
<th>n</th>
<th>Intercepto ± DE</th>
<th>Pendiente ± DE</th>
<th>TL\textsubscript{50}</th>
<th>Límites de confianza (95%)</th>
<th>(x^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-7})</td>
<td>60</td>
<td>-4.51 ± 0.77</td>
<td>8.00 ± 1.24</td>
<td>3.66</td>
<td>A 3.03-4.27</td>
<td>41.46</td>
</tr>
<tr>
<td>(10^{-5})</td>
<td>60</td>
<td>-4.10 ± 1.03</td>
<td>6.82 ± 1.61</td>
<td>3.99</td>
<td>A 2.87-5.30</td>
<td>17.98</td>
</tr>
<tr>
<td>(10^{-4})</td>
<td>60</td>
<td>-4.10 ± 0.53</td>
<td>4.32 ± 0.76</td>
<td>8.92</td>
<td>B 7.30-12.88</td>
<td>32.28</td>
</tr>
<tr>
<td>(10^{-3})</td>
<td>60</td>
<td>-5.14 ± 0.83</td>
<td>4.32 ± 1.14</td>
<td>15.41</td>
<td>B 10.24-52.04</td>
<td>14.38</td>
</tr>
<tr>
<td>(10^{-2})</td>
<td>60</td>
<td>-7.35 ± 1.62</td>
<td>6.17 ± 2.14</td>
<td>15.54</td>
<td>B 10.01-139.59</td>
<td>8.32</td>
</tr>
<tr>
<td>(10^{-1})</td>
<td>60</td>
<td>-5.00 ± 0.99</td>
<td>2.69 ± 1.14</td>
<td>72.48</td>
<td>B -</td>
<td>3.62</td>
</tr>
</tbody>
</table>

TL\textsubscript{50} con la misma letra son iguales entre sí según el traslape de los límites de confianza.

\textit{DE} = desviación estándar
TABLA 13. Porcentaje de mortalidad total y larvas infectadas causada por las cepas de B. brongnartii en larvas de primer estadio de P. opercularia.

Valores con la misma letra no son significativos según el análisis de Waller-Duncan (P< 0.05)

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Mortalidad total (%)</th>
<th>Larvas infectadas (%)</th>
<th>Mortalidad corregida (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>91.11± a</td>
<td>76.33± a</td>
<td>70.38± a</td>
</tr>
<tr>
<td>10^5</td>
<td>91.36± a</td>
<td>76.50± a</td>
<td>70.67± a</td>
</tr>
<tr>
<td>10^6</td>
<td>91.36± a</td>
<td>76.50± a</td>
<td>70.67± a</td>
</tr>
<tr>
<td>10^7</td>
<td>91.36± a</td>
<td>76.50± a</td>
<td>70.67± a</td>
</tr>
<tr>
<td>10^8</td>
<td>91.36± a</td>
<td>76.50± a</td>
<td>70.67± a</td>
</tr>
</tbody>
</table>

TABLA 14. Análisis de probit de la mortalidad obtenida en los bioensayos utilizando las cepas de B. bronngartii sobre larvas de Phthorimaea opercularia.

<table>
<thead>
<tr>
<th>Data</th>
<th>Probit DE</th>
<th>Percepción</th>
<th>χ^2</th>
<th>P</th>
<th>C2+100% (con 95% confidencia)</th>
<th>LG2+20% (con 95% confidencia)</th>
<th>LG3+5% (con 95% confidencia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.57 1.14</td>
<td>0.75</td>
<td>0.50</td>
<td>300</td>
<td>22.53</td>
<td><0.000</td>
<td>0.75-22.50</td>
<td>0.75-13.44</td>
</tr>
<tr>
<td>-4.57 1.14</td>
<td>0.75</td>
<td>0.50</td>
<td>300</td>
<td>22.53</td>
<td><0.000</td>
<td>0.75-22.50</td>
<td>0.75-13.44</td>
</tr>
<tr>
<td>-5.00 0.43</td>
<td>1.21-0.16</td>
<td>0.50</td>
<td>300</td>
<td>22.53</td>
<td><0.000</td>
<td>0.75-22.50</td>
<td>0.75-13.44</td>
</tr>
</tbody>
</table>

TABLA 15. Porcentaje de mortalidad total y larvas infectadas causada por las cepas de B. bronngartii en larvas de primer estadio de S. tangolias.

Valores con la misma letra no son significativos según el análisis de Waller-Duncan (P< 0.05)
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmetrischema tangolias (Gyen).

<table>
<thead>
<tr>
<th>Cepa</th>
<th>Intercepto ± DE</th>
<th>Pendiente ± DE</th>
<th>n</th>
<th>X²</th>
<th>Cl50 (x 10⁶ con/ml)</th>
<th>LC 95% (x 10⁶ con/ml)</th>
<th>Cl90 (x 10⁶ con/ml)</th>
<th>LC 95% (x 10⁶ con/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIPCa18:65</td>
<td>-4.52 ± 0.49</td>
<td>3.75 ± 0.26</td>
<td>390</td>
<td>0.001</td>
<td>1.18</td>
<td>0.43 ± 0.08</td>
<td>3.60</td>
<td>0.17 ± 0.89</td>
</tr>
<tr>
<td>CIPCa114:64</td>
<td>-4.07 ± 0.50</td>
<td>5.58 ± 0.38</td>
<td>363</td>
<td>0.001</td>
<td>9.37</td>
<td>2.85 ± 21.00</td>
<td>14.29</td>
<td>1.71 ± 21.00</td>
</tr>
<tr>
<td>CIFM1(1)</td>
<td>-5.07 ± 0.39</td>
<td>-2.78 ± 0.26</td>
<td>363</td>
<td>0.001</td>
<td>6.64</td>
<td>3.60 ± 0.66</td>
<td>2.17</td>
<td>1.38 ± 3.34</td>
</tr>
</tbody>
</table>

TABLA 16. Análisis de probit de la mortalidad obtenida en los bioensayos utilizando las cepas de B. brongniartii sobre larvas de Symmetrischema tangolias.

Valores sin diferencias significativas debido al traslapo de los límites de confianza

n = número de larvas evaluadas

DE = desviación estándar

LC = límites de confianza

<table>
<thead>
<tr>
<th>Cepa</th>
<th>Tratamiento</th>
<th>n</th>
<th>Mortalidad (%)</th>
<th>Intercepto ± DE</th>
<th>Pendiente ± DE</th>
<th>TL50</th>
<th>L.C. 95%</th>
<th>X²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIPCa18:65</td>
<td>CL50</td>
<td>60</td>
<td>68.33</td>
<td>2.81 ± 0.63</td>
<td>3.66 ± 0.36</td>
<td>5.29</td>
<td>4.12 ± 2.57</td>
<td>31.91</td>
</tr>
<tr>
<td>CIPCa114:64</td>
<td>CL50</td>
<td>60</td>
<td>88.33</td>
<td>-3.37 ± 0.74</td>
<td>6.96 ± 1.03</td>
<td>3.58</td>
<td>2.88 ± 1.00</td>
<td>34.51</td>
</tr>
<tr>
<td>CIFM1(1)</td>
<td>CL50</td>
<td>60</td>
<td>76.53</td>
<td>-4.03 ± 0.79</td>
<td>5.72 ± 0.91</td>
<td>5.07</td>
<td>4.06 ± 0.83</td>
<td>39.34</td>
</tr>
<tr>
<td>CIPCa18:65</td>
<td>CL90</td>
<td>60</td>
<td>61.67</td>
<td>-2.07 ± 0.67</td>
<td>4.06 ± 0.30</td>
<td>3.94</td>
<td>2.83 ± 2.74</td>
<td>31.01</td>
</tr>
<tr>
<td>CIPCa114:64</td>
<td>CL90</td>
<td>60</td>
<td>81.67</td>
<td>-2.58 ± 0.69</td>
<td>4.61 ± 0.93</td>
<td>3.52</td>
<td>2.36 ± 0.74</td>
<td>24.42</td>
</tr>
<tr>
<td>CIFM1(1)</td>
<td>CL90</td>
<td>60</td>
<td>76.74</td>
<td>-2.27 ± 0.47</td>
<td>3.76 ± 0.51</td>
<td>3.98</td>
<td>2.03 ± 0.89</td>
<td>37.91</td>
</tr>
</tbody>
</table>

TABLA 17. Análisis de Probit del tiempo letal medio (TL50) de la CL50 y CL90 de las cepas de B. brongniartii determinado en larvas de primer estadio de P. operculella.

* Menor valor y significativamente diferente según la prueba de proporciones Z

** TL 50 con diferencias significativas según el traslapo de los límites de confianza

n = número de larvas evaluadas

DE = desviación estándar

L.C. = límites de confianza
TABLA 18. Análisis de Probit del tiempo letal medio (TL50) de la CL50 y CL90 de las cepas de B. brongniartii determinado en larvas de primer estadio de S. tangolias.

* Valores mayores, sin diferencias significativas entre sí y con diferencias significativas con los demás valores según la prueba de proporciones Z
** TL50 con diferencias significativas según el traslape de los límites de confianza.

- n = número de larvas evaluadas
- DE = desviación estándar
- L.C. = límites de confianza

TABLA 19. Efecto de la CL50 y CL90 de las cepas de B. brongniartii sobre huevos de P. operculella y su efecto posterior sobre las larvas emergidas.

* ns = no significativo.
 * s = significativo.
*** valor significativamente diferente. Prueba de Dunnett $P < 0.05$.

a número inicial de huevos tratados 100.

b larvas emergidas a partir del número inicial de huevos tratados.

c huevos no viables y larvas muertas por otras causas.

<table>
<thead>
<tr>
<th>Cepa</th>
<th>Tratamiento</th>
<th>Huesos tratadosa</th>
<th>Huesos no viablesc</th>
<th>Huesos infectados</th>
<th>Larvas emergidasb</th>
<th>Larvas sanas</th>
<th>Larvas muertasc</th>
<th>Larvas infectadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIP Ca18(85)</td>
<td>CL<sub>50</sub></td>
<td>95</td>
<td>1</td>
<td>4</td>
<td>70</td>
<td>1</td>
<td>24***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CL<sub>90</sub></td>
<td>71***</td>
<td>15***</td>
<td>14</td>
<td>15***</td>
<td>11</td>
<td>45***</td>
<td></td>
</tr>
<tr>
<td>CIP Cu1(44)</td>
<td>CL<sub>50</sub></td>
<td>27***</td>
<td>15</td>
<td>52***</td>
<td>2***</td>
<td>5</td>
<td>20***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CL<sub>90</sub></td>
<td>1***</td>
<td>0</td>
<td>99***</td>
<td>0***</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CIP H1(1)</td>
<td>CL<sub>50</sub></td>
<td>98</td>
<td>2</td>
<td>0</td>
<td>89</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CL<sub>90</sub></td>
<td>43***</td>
<td>4</td>
<td>53***</td>
<td>22***</td>
<td>7</td>
<td>14***</td>
<td></td>
</tr>
<tr>
<td>Testigo</td>
<td></td>
<td>99</td>
<td>1</td>
<td>0</td>
<td>91</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

TABLA 20. Efecto de la CL₅₀ y CL₉₀ de las cepas de B. brongniartii sobre huevos de S. tangolias y su efecto posterior sobre las larvas emergidas.

ns = no significativo.

s = significativo.

*** valor significativamente diferente. Prueba de Dunnett $P < 0.05$.

a número inicial de huevos tratados 100.

b larvas emergidas a partir del número inicial de huevos tratados.

c huevos no viables y larvas muertas por otras causas.
<table>
<thead>
<tr>
<th>Cepa</th>
<th>Tratamiento</th>
<th>N° larvas Sanas</th>
<th>N° larvas muertas</th>
<th>N° larvas infectadas</th>
<th>N° adultos emergidos</th>
<th>N° pupas no viables</th>
<th>N° pupas infectadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIP Ca18(35)</td>
<td>CL₅₀</td>
<td>41</td>
<td>7</td>
<td>12 ***</td>
<td>31</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CL₉₀</td>
<td>27 ***</td>
<td>7</td>
<td>26 ***</td>
<td>17 ***</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>CIP Cu1(44)</td>
<td>CL₅₀</td>
<td>30 ***</td>
<td>7</td>
<td>23 ***</td>
<td>20 ***</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CL₉₀</td>
<td>6 ***</td>
<td>19</td>
<td>35 ***</td>
<td>2 ***</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>CIP H1(1)</td>
<td>CL₅₀</td>
<td>35</td>
<td>17</td>
<td>8</td>
<td>23</td>
<td>8</td>
<td>4 ***</td>
</tr>
<tr>
<td></td>
<td>CL₉₀</td>
<td>54</td>
<td>2</td>
<td>4</td>
<td>43</td>
<td>7</td>
<td>4 ***</td>
</tr>
<tr>
<td></td>
<td>Testigo</td>
<td>49</td>
<td>11</td>
<td>0</td>
<td>39</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

C.V | | 14.96 | 35.09 | 23.29 | 20.74 | 35.91 | 21.60 |

ANOVA (P<0.05) | s | s | s | s | ns | s |

TABLA 21. Efecto de la CL50 y CL90 de las cepas de B. brongniartii sobre larvas de último estadio de P. operculella y su efecto posterior sobre pupas formadas.

ns = no significativo.

s = significativo.

*** valor significativamente diferente. Prueba de Dunnett (P< 0.05).

a número inicial de larvas tratadas 60.

b pupas formadas a partir del número de larvas sobrevivientes al tratamiento.

c larvas muertas y pupas no viables por otras causas.
TABLA 22. Efecto de la CL50 y CL90 de las cepas de B. bronniartii sobre larvas de último estadio de S. tangolias y su efecto posterior sobre pupas formadas.

<table>
<thead>
<tr>
<th>Cepa</th>
<th>Tratamiento</th>
<th>Larvas tratadas a</th>
<th>Pupas formadas b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N° larvas sanas</td>
<td>N° larvas muertas c</td>
</tr>
<tr>
<td>CIP Ca18(85)</td>
<td>CL 30</td>
<td>51</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>CL 50</td>
<td>14***</td>
<td>16***</td>
</tr>
<tr>
<td>CIP Cu1(44)</td>
<td>CL 30</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CL 50</td>
<td>3***</td>
<td>12</td>
</tr>
<tr>
<td>CIP H1(1)</td>
<td>CL 30</td>
<td>29***</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>CL 50</td>
<td>26***</td>
<td>20</td>
</tr>
<tr>
<td>Testigo</td>
<td></td>
<td>57</td>
<td>3</td>
</tr>
</tbody>
</table>

ANOVA (P<0.05)

C.V. 21.31 32.09 25.59 24.52 30.78 17.31

ns = no significativo.

s = significativo.

*** valor significativamente diferente. Prueba de Dunnett (P <0.05).

a número inicial de larvas tratadas 60.

b pupas formadas a partir del número de larvas sobrevivientes al tratamiento.

c larvas muertas y pupas no viables por otras causas.
TABLA 23. Efecto de la CL50 y CL90 de las cepas de B. brongniartii sobre pupas de P. operculella y su efecto posterior sobre los adultos emergidos.

\[ns = \text{no significativo.} \]
\[s = \text{significativo.} \]
\[*** \text{valor significativamente diferente. Prueba de Dunnett (P < 0.05).} \]
\[^a \text{número inicial de pupas tratadas = 100.} \]
\[^b \text{adultos emergidos a partir del número de pupas viables.} \]
\[^c \text{pupas no viables por otras causas.} \]

TABLA 24. Efecto de la CL50 y CL90 de las cepas de B. brongniartii sobre pupas de S. tangolias y su efecto posterior sobre los adultos emergidos.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Pupas tratadas (a)</th>
<th>Adultos emergidos (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N° adultos Emergidos</td>
<td>N° pupas no viables</td>
</tr>
<tr>
<td>CL50</td>
<td>40 ***</td>
<td>11</td>
</tr>
<tr>
<td>CL90</td>
<td>4 ***</td>
<td>6</td>
</tr>
<tr>
<td>CL50</td>
<td>6 ***</td>
<td>2</td>
</tr>
<tr>
<td>CL90</td>
<td>0 ***</td>
<td>3</td>
</tr>
<tr>
<td>CL50</td>
<td>44 ***</td>
<td>15</td>
</tr>
<tr>
<td>CL90</td>
<td>2 ***</td>
<td>31 ***</td>
</tr>
<tr>
<td>Testigo</td>
<td>94</td>
<td>6</td>
</tr>
</tbody>
</table>

\[ns = \text{no significativo.} \]
\[s = \text{significativo.} \]
\[*** \text{valor significativamente diferente. Prueba de Dunnett (P < 0.05).} \]
\[^a \text{número inicial de pupas tratadas = 100.} \]
\[^b \text{adultos emergidos a partir del número de pupas viables.} \]
\[^c \text{pupas no viables por otras causas.} \]

FIGURA 1. Huevos de “polilla de la papa”: a) Phthorimaea operculella y b) Symmetrischema tangolias.

“Consultar en formato impreso”

FIGURA 2. Larvas de último estadio de “polilla de la papa”: a) Phthorimaea operculella, b) Symmetrischema tangolias.

“Consultar en formato impreso”

FIGURA 3. Pupas de “polilla de la papa”: a) P. Operculella y b) S. tangolias.
Caracterización de tres cepas de Beauveria bronniartii (Saccardo) Petch y su virulencia en Phthorimaeae operculella (Zeller) y Symmetrischema tangolias (Gyen).

“Consultar en formato impreso”

FIGURA 4. Adultos de “pullilla de la papa”: a) P. Operculella y b) S. tangolias.

“Consultar en formato impreso”

FIGURA 5. Daño causado por la “pullilla de la papa”: en hojas (a) y tubérculos (c) causados por P. Operculella y en tallos (b) y tubérculos (c) causados por S. tangolias.

“Consultar en formato impreso”

FIGURA 6. Hongo entomoatógeno Beauveria bronniartii. Montaje realizado con azul de lactofenol. 1000x

“Consultar en formato impreso”

FIGURA 7. Mantenimiento y obtención del inóculo para las tres cepas de Beauveria bronniartii.

“Consultar en formato impreso”

FIGURA 8. Metodología de crianza de Phthorimaeae operculella (Zeller) utilizada en el CIP.

“Consultar en formato impreso”

FIGURA 9. Metodología de crianza de Symmetrischema tangolias (Gyen) utilizada en el CIP.

“Consultar en formato impreso”

FIGURA 10. Flujograma de los ensayos realizados con el hongo Beauveria bronniartti.

“Consultar en formato impreso”

FIGURA 11. Flujograma de los bioensayos realizados con las tres cepas de Beauveria bronniartii en Phthorimaeae operculella y Symmetrischema tangolias.

“Consultar en formato impreso”

FIGURA 12. Flujograma de los bioensayos con Phthorimaeae operculella y Symmetrischema tangolias.

“Consultar en formato impreso”

FIGURA 13a. Aspecto y color de colonia de las tres capas de B. bronniartii en medio APD a 30 días de incubación. (a) cepa CIPCa18(85), (b) cepa CIPCu1(44) y (c) cepa CIPH1(1).

“Consultar en formato impreso”

FIGURA 13b. Pigmento difundido en el medio de cultivo APD a 30 días de incubación. (d) cepa CIPCa18(85), (e) cepa CIPCu1(4) y (f) cepa CIPH1(1).

“Consultar en formato impreso”
FIGURA 14. Análisis de regresión del crecimiento radial (cm/día) de las cepas de B. Brongniartii sembradas en APD (22°C) y evaluadas durante 15 días.

FIGURA 15. Perfiles de los productos del RAPD de las tres cepas de B. brongniartii con los iniciadores.

“Consultar en formato impreso”

FIGURA 16. Dendograma obtenido a partir del análisis RAPD, agrupando a las tres cepas de B. brongniartii en dos grupos.

“Consultar en formato impreso”

FIGURA 17. Larva de primer estadio de P. operculella y S. tangolias infectadas por B. brongniartii. (a) parálisis del insecto por efecto del hongo, (b) muerte de la larva tomando una coloración rojiza, (c) crecimiento micelial sobre la superficie de la larva, (d) deshidratación de los tejidos por las toxinas fúngicas, se observa gotas de exudado en el cuerpo del insecto, (e) cadáver momificado cubierto totalmente por el micelio, (f) esporulación del hongo y desprendimiento de las conidias.

“Consultar en formato impreso”
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symétrischema tangolias (Gyen).

FIGURA 18. Prueba de patogenicidad con las cepas de B. brongniartii sobre larvas de primer estádio de P. operculella.

FIGURA 19. Prueba de patogenicidad con las cepas de B. brongniartii sobre larvas de primer estádio de S. tangolias.
FIGURA 20. Concentración letal media (CL50) de las cepas de B. bronchiartii para larvas de primer estadio de Phthorimaea operculela.

FIGURA 21. Concentración letal media (CL50) de las cepas de B. bronchiartii para larvas de primer estadio de Symmtrischema tangolias.
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea opercuella (Zeller) y Symmetrischema tangolias (Gyen).

FIGURA 22. Mortalidad acumulada y TL50 para larvas de primer estadio de Phthorimaea opercuella causada por la CL50 de las cepas de B. brongniartii.

FIGURA 23. Mortalidad acumulada y TL50 para larvas de primer estadio de Phthorimaea opercuella causada por la CL90 de las cepas de B. brongniartii.
FIGURA 24. Mortalidad acumulada y TL50 para larvas de primer estadio de S. tangolias causada por la CL50 de las cepas de B. bronniartii.

FIGURA 25. Mortalidad acumulada y TL50 para larvas de primer estadio de S. tangolias causada por la CL90 de las cepas de B. bronniartii.
Caracterización de tres cepas de Beauveria bronquiiartii (Saccardo) Petch y su virulencia en
Phthorimaea opercullella (Zeller) y Symetrismchema tangolias (Gyen).

FIGURA 26. Efecto de la CL50 y CL90 de las cepas de B. bronquiiartii sobre huevos de P.
opercullella y su efecto posterior sobre larvas emergidas.

FIGURA 27. Efecto de la CL50 y CL90 de las cepas de B. bronquiiartii sobre huevos de S.
tangolias y su efecto posterior sobre larvas emergidas.

FIGURA 28. Efecto de la CL50 Y CL90 de las cepas de B. bronquiiartii sobre larvas de
último estadio de P. opercullella y su efecto posterior sobre pupas formadas.
FIGURA 29. Efecto de la CL50 y CL90 de las cepas de B. brongniartii sobre larvas de último estadio de S. tangolias y su efecto posterior sobre pupas formadas.

FIGURA 30. Efecto de la CL50 y CL90 de las cepas de B. brongniartii sobre pupas de P. operculella y su efecto posterior en adultos emergidos.
Caracterización de tres cepas de Beauveria brongniartii (Saccardo) Petch y su virulencia en Phthorimaea operculella (Zeller) y Symmetrischema tangolias (Gyen).

FIGURA 31. Efecto de la CL50 y CL90 de las cepas de B. brongniartii sobre pupas de S. tangolias y su efecto posterior en adultos emergidos.

FIGURA 32. Efecto de la CL50 y CL90 de las cepas de B. brongniartii en los estados de huevo (H), larva de primer estadio (L1), larva de cuarto estadio (L4) y pupa (P) de P. operculella.
FIGURA 33. Efecto de la CL50 y CL90 de las cepas de B. brongniartii en los estados de huevo (H), larva de primer estadio (L1), larva de último estadio (L4) y pupa (P) de S. tangolias.

FIGURA 34. Huevos de P. operculella (a) y S. tangolias (b) infectados con B. brongniartii.

“Consultar en formato impreso”

FIGURA 35. Larva de último estadio de S. tangolias infectada con B. brongniartii. Se observa el micelio que cubre totalmente el cuerpo del insecto.

“Consultar en formato impreso”

FIGURA 36. Pupa de S. tangolias infectada con la cepa CIPCu1(44) de B. brongniartii. El micelio crece formando fascículos sinematosos.

“Consultar en formato impreso”

FIGURA 37. Adulto de S. tangolias infectado con B. brongniartii. La infección
comienza en las patas anteriores (a), finalizando con una invasión total del insecto por el micelio (b).

“Consultar en formato impreso”